Discover
/
Article

Nanotube loudspeakers

JAN 01, 2009

In typical loudspeakers, a coil surrounds the apex of a flexible cone; when a varying current flows through the coil, the cone moves toward and away from a fixed permanent magnet and produces pressure waves we hear as sound. But researchers from Tsinghua University and Beijing Normal University have demonstrated a radically simpler loudspeaker design based on nanotubes: They showed that a thin film of nanotubes can reproduce sounds over a wide frequency range—including the full human audible range—with high sound pressure level, low total harmonic distortion, and no magnets. The team created the film by drawing nanotubes from a so-called superaligned array grown on a wafer, a technique the group introduced six years ago (see also Physics Today, October 2005, page 23 ). The resulting film, only tens of nanometers thick but up to 10 cm wide, is transparent and has a nearly purely resistive impedance. When electrodes are placed along its ends and an alternating current is applied, the film produces clear tones that can be as loud as a conventional speaker. Moreover, since the film is flexible, the nanotube speaker can be configured into arbitrary shapes or mounted onto curved substrates; the figure shows an omnidirectional cylindrical loudspeaker 9 cm in diameter and 8.5 cm high. The film can even be stretched with essentially no degradation of the sound reproduction. The researchers attribute the sound generation not to vibration but to a thermoacoustic effect first proposed nearly a century ago: Thanks to the nanotube film’s extremely low heat capacity per unit area, changes in the current flowing through the film are reflected in the film’s temperature, and those temperature changes excite pressure waves in the surrounding air. The mechanism is independent of the sign of the current, which leads to a frequency doubling of the input signal, but that drawback can be overcome by applying a constant current bias. A movie at http://blogs.physicstoday.org/update/acoustics shows a nanotube loudspeaker being periodically stretched with almost no noticeable effect on the sound intensity. (L. Xiao et al. Nano Lett. , in press, http://dx.doi.org/10.1021/nl802750z .)

PTO.v62.i1.17_3.d1.jpg

More about the authors

Richard J. Fitzgerald, rfitzger@aip.org

Related content
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.
This Content Appeared In
pt-cover_2009_01.jpeg

Volume 62, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.