Discover
/
Article

An expandable molecular sponge

OCT 01, 2010

Zinc ions and some other metal ions can bind to three or four organic molecules at once. If those molecules are long and attach to zinc at both ends, it’s possible to create a metal-organic framework (MOF), an open sheet of linked molecules with ions at the vertices. And if those sheets bind to each other and stack in register, the result is a material whose columnar pores can store, catalyze, or otherwise usefully process small molecules. Matthew Rosseinsky and his coworkers at the University of Liverpool in the UK have made a MOF material, but with a new twist. For its linker, the Liverpool team used a dipeptide—that is, two peptide-bonded amino acids (glycine and alanine; see figure). The team made two versions of the material, one incorporating a solvent (a mix of water and methanol) and one not. X-ray diffraction and nuclear magnetic resonance spectroscopy revealed that adding the solvent caused the dipeptide linkers to straighten, widening the pores to accommodate the solvent ions. Glycine, alanine, and the 18 other naturally occurring amino acids are characterized by side chains that are polar, nonpolar, positively charged, or negatively charged. Given that variety, the Liverpool experiment suggests that peptide-based MOF materials might find uses as expandable sponges for a wide range of molecules. (J. Rabone et al., Science 329 , 1053, 2010 http://dx.doi.org/10.1126/science.1190672 .)

PTO.v63.i10.21_1.d1.jpg

Related content
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.
This Content Appeared In
pt-cover_2010_10.jpeg

Volume 63, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.