Discover
/
Article

A new look for magnetic-mirror plasma confinement

AUG 01, 2015

Controlling thermonuclear fusion requires confining hot plasmas at high densities and high temperatures for sufficiently long periods of time. Tokamaks, such as the one under construction at ITER, provide that confinement through a strong magnetic field that loops around in a closed, toroidal geometry; the plasma’s charged ions and electrons follow the field lines in tight spirals. (See the articles by Don Batchelor, Physics Today, February 2005, page 35 , and by Richard Hazeltine and Stewart Prager, Physics Today, July 2002, page 30 .) A different strategy for magnetic confinement uses a cylindrical solenoid capped at each end by a magnetic mirror, a region of higher field that forces the charged particles to slow and reverse direction. The electron temperature is the main factor limiting the plasma confinement time and thus the power efficiency of a fusion reactor. Concerns over the attainable electron temperature were a factor in magnetic mirrors largely falling out of favor in the 1980s. Peter Bagryansky and colleagues now report more than tripling the electron temperature—up to 900 eV from their previous 250 eV and well above early estimated limits—of the deuterium plasma in their 7-m-long magnetic-mirror reactor at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Key to the group’s achievement were a novel system that resonantly heated the electrons by high-power microwaves and a new technique to mitigate the plasma’s so-called flute instability. The results, say the researchers, show promise for such uses as developing and testing fusion materials and reprocessing nuclear waste. (P. A. Bagryansky et al., Phys. Rev. Lett. 114, 205001, 2015, doi:10.1103/PhysRevLett.114.205001 .)

PTO.v68.i8.22_3.f1.jpg

More about the authors

Richard J. Fitzgerald, rfitzger@aip.org

Related content
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.
This Content Appeared In
pt_cover0815.jpg

Volume 68, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.