Discover
/
Article

Unification of Couplings

OCT 01, 1991
Recent high‐precision experimental results support the predictions of the minimal supersymmetric SU(5) model that unifies electromagnetism and the weak and strong interactions.
Savas Dimopoulos
Stuart A. Raby
Frank Wilczek

Ambitious attempts to obtain a unified description of all the interactions of nature have so far been more notable for their ingenuity, beauty and chutzpah than for any help they have afforded toward understanding concrete facts about the physical world. In this article we wish to describe one shining exception: how ideas about the unification of the strong, weak and electromagnetic interactions lead to concrete, quantitative predictions about the relative strengths of these interactions.

This article is only available in PDF format

References

  1. 1. Other good semipopular introductions to many of the main ideas of gauge theories include S. Weinberg, Sci. Am., July 1974, p. 50; and G. ‘t Hooft, Sci. Am., June 1980, p. 104. Standard textbooks on gauge theories include I. Aitchison, A. Hey, Gauge Theories in Particle Physics, Adam Hilger, Bristol, UK (1982);
    K. Gottfried, V. Weisskopf, Concepts for Particle Physics I and II, Clarendon, Oxford (1984);
    C. Quigg, Gauge Theories for the Strong, Weak, and Electromagnetic Interactions, Benjamin/Cummings, Reading, Mass. (1987);
    and T. P. Cheng, L.‐F. Li, Gauge Theories of Elementary Particle Physics, Clarendon, Oxford (1984).
    See also the excellent annotated reprint collection Gauge Inuariance, T. P. Cheng, L.‐F. Li, eds., Am. Assoc. Phys. Teachers, College Park, Md. (1990).

  2. 2. An early attempt at unification of couplings is J. Pati, A. Salam, Phys. Rev. D 8, 1240 (1973). https://doi.org/PRVDAQ
    Color unification along the lines discussed here was introduced in H. Georgi, S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).https://doi.org/PRLTAO

  3. 3. R. Becker‐Szendy et al., Phys. Rev. D 42, 2974 (1990). https://doi.org/PRVDAQ
    Particle Data GroupR. Becker‐Szendy,, Phys. Lett. B 239, 1 (1990).https://doi.org/PYLBAJ

  4. 4. For discussion of the Higgs phenomenon in quantum field theory, see Y. Nambu, Phys. Rev. 117, 648 (1960); https://doi.org/PHRVAO
    P. W. Higgs, Phys. Rev. Lett. 12, 132 (1964); https://doi.org/PRLTAO
    P. W. Higgs, Phys. Rev. Lett. , 13, 508 (1964);
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964);
    G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964). https://doi.org/PRLTAO
    For the Higgs phenomenon in superconductivity, see F. London, H. London, Proc. R. Soc. London, Ser. A 149, 71 (1935);
    V. L. Ginzburg, L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950); https://doi.org/ZETFA7
    P. W. Anderson, Phys. Rev. 110, 827 (1958); https://doi.org/PHRVAO
    Phys. Rev. , 112, 1900 (1958).

  5. 5. D. J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
    H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).https://doi.org/PRLTAO

  6. 6. D. J. Gross, F. Wilczek, Phys. Rev. D 8, 3633 (1973). https://doi.org/PRVDAQ
    S. Weinberg, Phys. Rev. Lett. 31, 494 (1973). https://doi.org/PRLTAO
    H. Fritzsch, M. Gell‐Mann, H. Leutweyler, Phys. Lett. B 47, 365 (1973).https://doi.org/PYLBAJ

  7. 7. G. Miller et al., Phys. Rev. D 5, 528 (1972). https://doi.org/PRVDAQ
    A. Bodek et al., Phys. Rev. D 20, 1471 (1979).https://doi.org/PRVDAQ

  8. 8. R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969). https://doi.org/PRLTAO
    J. D. Bjorken, Phys. Rev. 178, 1547 (1969).https://doi.org/PHRVAO

  9. 9. For a recent review, see G. Altarelli, Ann. Rev. Nucl. Part. Phys. 39, 357 (1984).

  10. 10. R. J. Hughes, Phys. Lett. B 97, 246 (1980); https://doi.org/PYLBAJ
    R. J. Hughes, Nucl. Phys. B 186, 376 (1981). https://doi.org/NUPBBO
    N. K. Nielsen, Am. J. Phys. 49, 1171 (1981).https://doi.org/AJPIAS

  11. 11. H. Georgi, H. Quinn, S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).https://doi.org/PRLTAO

  12. 12. Yu. Gol’fond, E. Likhtman, JETP Lett. 13, 323 (1971). https://doi.org/JTPLA2
    D. Volkov, V. Akulov, Phys. Lett. B 46, 109 (1973). https://doi.org/PYLBAJ
    J. Wess, B. Zumino, Phys. Lett. B 49, 52 (1974). https://doi.org/PYLBAJ
    See also the very useful reprint collection Supersymmetry (2 vols.), S. Ferrara, ed., North‐Holland/World Scientific, Singapore (1987).

  13. 13. Y. Nambu, Phys. Rev. Lett. 4, 380 (1960). https://doi.org/PRLTAO
    Y. Nambu, G. Jona‐Lasinio, Phys. Rev. 122, 345 (1961); https://doi.org/PHRVAO
    Y. Nambu, G. Jona‐Lasinio, 124, 264 (1961).
    J. Goldstone, Nuovo Cimento 18, 154 (1961).
    P. Fayet, J. Iliopoulos, Phys. Lett. B 51, 461 (1974). https://doi.org/PYLBAJ
    L. O’Raifeartaigh, Nucl. Phys. B 96, 331 (1975).https://doi.org/NUPBBO

  14. 14. Early papers mentioning the hierarchy problem include E. Gildener, Phys. Rev. D 14, 1667 (1976); https://doi.org/PRVDAQ
    E. Gildener, S. Weinberg, Phys. Rev. D 15, 3333 (1976); https://doi.org/PRVDAQ
    L. Susskind, Phys. Rev. D 20, 2619 (1979). https://doi.org/PRVDAQ
    Early papers applying supersymmetry in atempts to ameliorate the hierarchy problem include M. Veltman, Acta Phys. Pol. B 12, 437 (1981); https://doi.org/APOBBB
    S. Dimopoulos, S. Raby, Nucl. Phys. B 192, 353 (1981); https://doi.org/NUPBBO
    M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189, 575 (1981); https://doi.org/NUPBBO
    E. Witten, Nucl. Phys. B 188, 513 (1981); https://doi.org/NUPBBO
    S. Dimopoulos, F. Wilczek, in Unity of the Fundamental Interactions, A. Zichichi, ed., Plenum, New York (1983), p. 237.

  15. 15. S. Dimopoulos, S. Raby, F. Wilczek, Phys. Rev. D 24, 1681 (1981).https://doi.org/PRVDAQ

  16. 16. D. Freedman, P. van Nieuwenhuizen, S. Ferrara, Phys. Rev. D 13, 3214 (1976). https://doi.org/PRVDAQ
    S. Deser, B. Zumino, Phys. Lett. B 62, 335 (1976). See also Ferrara, ref. 12.https://doi.org/PYLBAJ

  17. 17. P. Fayet, Phys. Lett. B 69, 489 (1977); https://doi.org/PYLBAJ
    P. Fayet, 84, 416 (1979).
    S. Ferrara, L. Ghirardello, F. Palumbo, Phys. Rev. D 20, 403 (1979).

  18. 18. S. Dimopoulos, H. Georgi, Nucl. Phys. B 193, 150 (1981).https://doi.org/NUPBBO

  19. 19. N. Sakai, Z. Phys. C 11, 153 (1981). https://doi.org/ZPCFD2
    L. E. Ibanez, G. G. Ross, Phys. Lett. B 105, 439 (1981). https://doi.org/PYLBAJ
    M. B. Einhorn, D. R. T. Jones, Nucl. Phys. B 196, 475 (1982). https://doi.org/NUPBBO
    W. J. Marciano, G. Senjanovic, Phys. Rev. D 25, 3092 (1982).https://doi.org/PRVDAQ

  20. 20. These results from the DELPHI, ALEPH, L3 and OPAL collaborations are in a series of papers too numerous to list here; they mostly have appeared (and continue to appear) in Phy. Lett. B.

  21. 21. U. Amaldi, W. de Boer, H. Fürstenau, Phys. Lett. B 260, 447 (1991). https://doi.org/PYLBAJ
    The possibility of such analysis was demonstrated earlier by J. Ellis, S. Kelly, D. Nanopoulos, Phys. Lett. B 249, 441 (1990). https://doi.org/PYLBAJ
    A similar analysis was carried out independently by P. Langacker, M. Luo, U. Pennsylvania preprint (1991).

  22. 22. See, for example, H. Georgi, D. Nanopoulos, Nucl. Phys. B 155, 52 (1979); https://doi.org/NUPBBO
    L. E. Ibanez, Nucl. Phys. B 181, (1981);
    P. Frampton, S. L. Glashow, Phys. Lett. B 135, 340 (1983); https://doi.org/PYLBAJ
    P. Frampton, B.‐H. Lee, Phys. Rev. Lett. 64, 619 (1990); https://doi.org/PRLTAO
    A. Giveon, L. Hall, U. Sarid, U. Calif., Berkeley preprint (July 1991).

  23. 23. S. Weinberg, Phys. Rev. D 26, 257 (1982). https://doi.org/PRVDAQ
    N. Sakai, T. Yanagida, Nucl. Phys. B 197, 533 (1982).https://doi.org/NUPBBO

  24. 24. S. Dimopoulos, S. Raby, F. Wilczek, Phys. Lett. B 112, 133 (1982). https://doi.org/PYLBAJ
    J. Ellis, D. V. Nanopoulos, S. Rudaz, Nucl. Phys. B 202, 43 (1982).https://doi.org/NUPBBO

More about the authors

Savas Dimopoulos, Stanford University, Stanford, California.

Stuart A. Raby, Ohio State University, Columbus, Ohio.

Frank Wilczek, Natural Science Institute, Princeton, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1991_10.jpeg

Volume 44, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.