Discover
/
Article

Track‐recording solids

SEP 01, 1981
Simple dielectric solids, which reveal through chemical etching the tracks left by fast‐moving nuclei, are being used as particle detectors in a growing number of scientific and technological areas.
Steven P. Ahlen
Gregory Tarlé
P. Buford Price

Since the beginning of the solar system, natural particle detectors have been recording the passage of charged particles from the sun and cosmic rays. Now, in addition to developing the latent images of these fossil trails of damage in solids and learning about the nature of ancient radiation, we are creating new and more sensitive detectors of a similar kind. These detectors, which are finding a wide variety of applications, take advantage of the fact that a highly charged particle penetrating any nonconducting solid leaves a submicroscopic trail that can be chemically amplified. The increased chemical reactivity of the trails of radiationdamaged material is the basis for the so‐called etched‐track process, by which we make the particle tracks large enough to measure in an optical microscope. As we will see, there is sufficient information in the tracks to allow us to determine a particle’s charge and velocity.

This article is only available in PDF format

References

  1. 1. R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley (1975).

  2. 2. See articles in Solid State Nuclear Track Detectors, H. François et al., eds., Pergamon, New York (1980).

  3. 3. R. L. Fleischer, American Scientist 67, 194 (1979).

  4. 4. A useful review of models of track production in solids is given by R. L. Fleischer, Prog. Materials Science 25 (1981), in press.

  5. 5. For surveys of extraterrestrial track studies see papers in The Ancient Sun, R. O. Pepin, J. A. Eddy, R. B. Merrill, eds., Pergamon, New York (1980), and in the proceedings of the Lunar and Planetary Science Conferences held annually in Houston.

  6. 6. L. E. Seiberling, J. E. Griffith, T. A. Tombrello, Proc. 11th Lunar Sci. Conf., Houston, 17–21 March, 1980.

  7. 7. D. O’Sullivan, P. B. Price, K. Kinoshita, G. Willson, Nature, to be published.

  8. 8. A. C. Nelson, Lawrence Berkeley Laboratory Report No. LBL‐11147 (1980).

  9. 9. J. N. Goswami, D. Lal, Icarus 40, 510 (1979).https://doi.org/ICRSA5

  10. 10. J. H. Chan, P. B. Price, Phys. Rev. Lett. 35, 539 (1975); https://doi.org/PRLTAO
    S. Biswas, N. Durgaprasad, J. Nevatia, V. S. Venkatavaradan, J. N. Goswami, U. B. Jayanthi, D. Lal, S. K. Mattoo, Astrophys. Space Sci. 35, 337 (1975).https://doi.org/APSSBE

  11. 11. J. M. Nitschke et al., Nucl. Phys. A352, 138 (1981).

  12. 12. J. D. Stevenson, P. B. Price, Phys. Rev. C, in press.

  13. 13. E. V. Benton, R. P. Henke, C. A. Tobias, W. R. Holley, J. Fabrikant, page 725 of reference 2.

  14. 14. G. Kraft, T. C. H. Yang, T. Richards, C. A. Tobias, Lawrence Berkeley Laboratory Report No. LBL‐11220 (1980), page 375.

  15. 15. D. J. Gore, T. J. Jenner, Phys. Med. Biol. 25, 1095 (1980).https://doi.org/PHMBA7

  16. 16. N. M. Ceglio, E. V. Benton, page 755 of reference 2.

  17. 17. R. W. Deblois, C. P. Bean, R. K. A. Wesley, J. Colloid Interface Sci. 61, 323 (1977).

  18. 18. H. Heitmann, C. Fritsche, P. Hansen, J. P. Krumme, R. Spohr, K. Witter, J. Mag. Magnetic Materials 7, 40 (1978).

  19. 19. H. W. Alter, R. L. Fleischer, Health Physics 40, 63 (1981).

  20. 20. B. G. Cartwright, E. K. Shirk, P. B. Price, Nucl. Instr. Meth. 153, 457 (1978).

  21. 21. G. Tarlé, S. P. Ahlen, P. B. Price, Nature, to be published (1981).

  22. 22. G. D. Westfall, L. W. Wilson, P. J. Lindstrom, H. J. Crawford, D. E. Greiner, H. H. Heckman, Phys. Rev. C 19, 1309 (1979).

  23. 23. E. M. Friedlander, R. W. Gimpel, H. H. Heckman, Y. J. Karant, B. Judek, E. Ganssauge, Phys. Rev. Lett. 45, 1084 (1980).https://doi.org/PRLTAO

  24. 24. P. B. Price et al., Proc. 6th Lunar Sci. Conf., 3449 (1975).

More about the Authors

Steven P. Ahlen. University of california.

Gregory Tarlé. University of california.

P. Buford Price. Sciences Laboratory.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1981_09.jpeg

Volume 34, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.