One of the inventors of an intense, completely polarized muon beam that every ‘meson factory’ now provides discusses the bittersweet history of the invention and some of the recent experiments that it made possible.
Long ago, shortly before World War II, when I was but 13 years of age, I was excited by an article in Popular Mechanics magazine that described Ernest O. Lawrence’s project to construct the world’s greatest atom smasher, a 184‐inch cyclotron, on a hill overlooking the Berkeley campus of the University of California. From that point on, my career goal was to become a physicist. While the 184‐inch‐cyclotron project has always symbolized to me the beauty and excitement of unlocking the mysteries of nature, I never suspected, even for many years into my career as a high‐energy and cosmic‐ray physicist, that I would have a rendezvous with destiny involving the 184‐inch cyclotron: using it in its waning years to make my most significant contribution to the progress of science.
2. A. E. Pifer, T. Bowen, K. R. Kendall, Nucl. Instrum. Methods 135, 39 (1976).https://doi.org/NUIMAL
3. M. Daum, SIN Newsletter No. 12, p. 2 (December 1979); K.‐P. Arnold, P. O. Egan, M. Gladisch, W. Jacobs, H. Orth, J. Vetter, P. Zimmerman, SIN Newsletter No. 12, p. 4. (December 1979).
4. O. B. van Dyck, E. W. Hoffman, R. J. Macek, G. Sanders, R. D. Werbeck, J. K. Black, IEEE Trans. Nucl. Sci. NS‐26, 3179 (1979).https://doi.org/IETNAE
5. R. D. Bolton, J. D. Bowman, R. Carlini, M. D. Cooper, M. Duong‐van, J. S. Frank, A. L. Hallin, P. Heusi, C. M. Hoffman, F. G. Mariam, H. S. Matis, R. E. Mischke, D. E. Nagle, V. D. Sandberg, G. H. Sanders, U. Sennhauser, R. L. Talaga, R. Werbeck, R. A. Williams, S. L. Wilson, E. B. Hughes, R. Hofstadter, D. Grosnick, S. C. Wright, G. E. Hogan, V. L. Highland, Phys. Rev. Lett. 53, 1415 (1984).https://doi.org/PRLTAO
6. W. W. Kinnison, in The Time Projection Chamber, J. A. MacDonald, ed., AIP Conf. Proc. 108, American Institute of Physics, New York (1984), p. 21.
7. W. Bertl, R. Eichler, L. Felawka, H. K. Walter, G. Bowden, S. Egli, R. Engfer, Ch. Grab, E. A. Hermes, D. Herter, P. Heusi, N. Kraus, R. J. Powers, H. S. Pruys, A. v. d. Schaaf, J. J. Domingo, J. Jansen, N. Lordong, J. Mergaert, J. Martino, Phys. Lett. 140B, 299 (1984).https://doi.org/PYLBAJ
8. J. Carr, G. Gidal, A. Jodido, K. A. Shinsky, H. M. Steiner, D. P. Stoker, M. Strovink, R. D. Tripp, B. Gobbi, C. J. Oram, Phys. Rev. Lett. 51, 627 (1983); https://doi.org/PRLTAO Erratum, J. Carr, G. Gidal, A. Jodido, K. A. Shinsky, H. M. Steiner, D. P. Stoker, M. Strovink, R. D. Tripp, B. Gobbi, C. J. Oram, 51, 1222 (1983); https://doi.org/PRLTAO, Phys. Rev. Lett. D. P. Stoker, B. Balke, J. Carr, G. Gidal, A. Jodidio, K. A. Shinsky, H. M. Steiner, M. Strovink, R. D. Tripp, B. Gobbi, C. J. Oram, Phys. Rev. Lett. 54, 1887 (1985).https://doi.org/PRLTAO
9. F. G. Mariam, W. Beer, P. R. Bolton, P. O. Egan, C. J. Gardner, V. W. Hughes, D. C. Lu, P. A. Souder, H. Orth, J. Vetter, U. Moshev, G. zu Putlitz, Phys. Rev. Lett. 49, 993 (1982).https://doi.org/PRLTAO
10. C. J. Oram, J. M. Bailey, P. W. Schmor, C. A. Fry, R. F. Kiefl, J. B. Warren, G. M. Marshall, A. Olin, Phys. Rev. Lett. 52, 910 (1984); https://doi.org/PRLTAO A. Badertscher, S. Dhawan, P. O. Egan, V. W. Hughes, D. C. Lu, M. W. Ritter, K. A. Woodle, M. Gladische, H. Orth, G. zu Putlitz, M. Eckhause, J. Kane, F. G. Mariam, J. Reidy, Phys. Rev. Lett. 52, 914 (1984).https://doi.org/PRLTAO
11. D. G. Fleming, J. H. Brewer, D. M. Garner, A. E. Pifer, T. Bowen, D. A. DeLise, K. M. Crowe, J. Chem. Phys. 64, 1281 (1976); https://doi.org/JCPSA6 D. G. Fleming, D. M. Garner, J. H. Brewer, J. B. Warren, G. M. Marshall, G. Clark, A. E. Pifer, T. Bowen, Chem. Phys. Lett. 48, 393 (1977).https://doi.org/CHPLBC
12. For reviews of muonium chemistry and muon spin rotation, see J. H. Brewer, K. M. Crowe, F. N. Gygax, A. Schenck, in Muon Physics, Vol. III, V. W. Hughes, C. S. Wu, eds., Academic, New York (1975), p. 3; J. H. Brewer, K. M. Crowe, Ann. Rev. Nucl. Part. Sci. 28, 239 (1978); https://doi.org/ARPSDF Proc. Yamada Conf. VII on Muon Spin Rotation, in J. H. Brewer, K. M. Crowe, Hyperfine Interactions 17–19, 1 (1984); https://doi.org/HYINDN R. H. Heffner, D. G. Fleming, PHYSICS TODAY, December 1984, p. 38.
13. R. Kubo, T. Toyabee, in Magnetic Resonance and Relaxation, R. Blinc, ed., North Holland, Amsterdam (1967), p. 810; R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, R. Kubo, Phys. Rev. B 20, 850 (1979); https://doi.org/PRBMDO C. W. Clawson, K. M. Crowe, S. E. Kohn, S. S. Rosenblum, C. Y. Huang, J. L. Smith, J. H. Brewer, Physica 109&110B, 2164 (1982).
14. E. Holzschuh, W. Kundig, P. F. Meier, B. D. Patterson, J. P. F. Sellschop, M. C. Stemmet, H. Appel, Phys. Rev. A 25, 1272 (1982); https://doi.org/PLRAAN B. D. Patterson, E. Holzschuh, W. Kudig, P. F. Meier, W. Odermatt, J. P. F. Sellschop, M. C. Stemmet, Hyperfine Interactions 18, 605 (1984); https://doi.org/HYINDN D. P. Spencer, D. G. Fleming, J. H. Brewer, Hyperfine Interactions 18, 567 (1984).https://doi.org/HYINDN
15. B. D. Patterson, A. Bosshard, U. Straumann, P. Truol, A. Wuest, Th. Wichert, Hyperfine Interactions 19, 965 (1984).https://doi.org/HYINDN
16. J. Picard, A. Placci, E. Polacco, E. Zavattini, G. Carbori, U. Gastaldi, G. Gorini, G. Stefanini, G. Torelli, J. Duclos, A. Magnon, Nuovo Cim. Lett. 2, 957 (1971); E. Borie, M. Leon, Phys. Rev. A 21, 1460 (1980).https://doi.org/PLRAAN
17. J. G. Fetkovich, E. G. Pewitt, Phys. Rev. Lett. 11, 290 (1963); https://doi.org/PRLTAO M. M. Bloch, T. Kikuchi, D. Koetke, J. Kopelman, C. R. Sun, R. Walker, G. Culligan, V. L. Telegdi, R. Winston, Phys. Rev. Lett. 11, 301 (1963); https://doi.org/PRLTAO M. M. Block, J. B. Kopelman, C. R. Sun, Phys. Rev. 140B, 143 (1965).https://doi.org/PHRVAO
18. J. H. Doede, R. H. Hildebrand, M. H. Israel, M. R. Pyka, Phys. Rev. 129, 2808 (1963).https://doi.org/PHRVAO
20. E. V. Sager, PhD dissertation, University of Maryland (1979); G. M. Marshall, J. B. Warren, C. J. Oram, R. F. Kiefl, Phys. Rev. D 25, 1174 (1982).https://doi.org/PRVDAQ
21. Time projection chamber detector: D. Bryman, M. Leitch, I. Navon, T. Numao, P. Schlatter, M. S. Dexit, C. K. Hargrove, H. Mes, A. Bennett, J. A. MacDonald, R. Skegg, J. Spuller, A. Burnham, M. Hasinoff, J.‐M. Poutissou, G. Azuelos, P. Depommier, J.‐P. Martin, R. Poutissou, M. Blecher, K. Gotow, A. L. Carter, in The Time Projection Chamber, J. A. MacDonald, ed., AIP Conf. Proc. 108, American Institute of Physics, New York (1984), p. 12; Radiochemical detector: A. Olin, spokesman, Muonium‐Antimuonium Conversion, Experiment 304, TRIUMF, Vancouver, British Columbia (1984).
22. Hot Pt foils: K. R. Kendall, PhD dissertation, University of Arizona (1972); Au foils: B. A. Barnett, C. Y. Chang, P. Steinberg, G. B. Yodh, H. D. Orr, J. B. Carroll, M. Eckhause, J. R. Kane, C. P. Spence, C. S. Hsieh, Phys. Rev. A 15, 2246 (1977); https://doi.org/PLRAAN W. Beer, P. R. Bolton, P. O. Egan, V. W. Hughes, D. C. Lu, F. G. Mariam, P. A. Souder, J. Vetter, M. Gladisch, G. zu Putlitz, U. Moser, L. J. Teig, R. S. Holmes, P. H. Steinberg, J. R. Kane, R. Hartmann, in Proc. 8th Intl. Conf. High Energy Physics and Nuclear Structure, D. F. Measday, A. W. Thomas, eds., North Holland, Amsterdam (1980); SiO2 powders: G. M. Marshall, J. B. Warren, D. M. Garner, G. S. Clark, J. H. Brewer, D. G. Fleming, Phys. Lett. 65A, 351 (1978); https://doi.org/PYLAAG D. R. Harshman, R. Keitel, M. Senba, E. J. Ansaldo, J. H. Brewer, Hyperfine Interactions 18, 557 (1984); https://doi.org/HYINDN Beam degrader: P. R. Bolton, A. Badertscher, P. O. Egan, C. J. Gardner, M. Gladisch, V. W. Hughes, D. C. Lu, M. Ritter, P. A. Souder, J. Vetter, G. zu Putlitz, M. Eckhause, J. Kane, Phys. Rev. Lett. 47, 1441 (1981).https://doi.org/PRLTAO
23. E. Derman, Phys. Rev. D 19, 317 (1979), suggests a model including τ leptons that allows muon‐to‐antimuon transformations, but the model’s predictions for b‐quark decay appear inconsistent with experimental results.https://doi.org/PRVDAQ
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 38, Number 7
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.