Discover
/
Article

The Revealing Role of Pressure in the Condensed Matter Sciences

AUG 01, 1998
Experimenters can now change the densities of condensed matter by upward of an entire order of magnitude, and thereby impart dramatic changes in physical and chemical properties of materials.

DOI: 10.1063/1.882374

Russell J. Hemley
Neil W. Ashcroft

Matter in bulk has both a microscopic and macroscopic description, with the latter going back to the very earliest days of thermodynamics. Of the common thermodynamic variables pressure (p) and temperature (T), it is temperature that has played by far the most prominent role in probing condensed matter and in our fundamental understanding of it. However, even as far back as 1660, Robert Boyle declared in his famous treatise commonly known as Touching the Spring of the Air that “perhaps the pressure of the air might have an interest in more phenomena than men have hitherto thought.” More than three centuries later, we can see how right he was, as systematic use of pressure has led to considerable insight into the properties of matter, especially its electronic properties. As A. Jayaraman noted when he was at AT&T Bell Laboratories, of all physical variables, pressure possesses one of the greatest ranges—over 60 orders of magnitude. At the high end, the pressures are those of the interiors of neutron stars; at the other, they gauge the conditions of the remotest vacua of outer space. And as Claude Berthelot demonstrated in early experiments on simple fluids, the pressure is not even obliged to be positive. (Negative pressure is created by, for example, pulling on the surface of a solid or on a wall of a sealed vessel full of fluid.)

This article is only available in PDF format

References

  1. 1. For summaries of recent results and techniques, see Rev. High Pressure Sci. Technol. 7 (1998).https://doi.org/KKGIE2

  2. 2. A. N. Zisman, I. V. Aleksandrov, S. M. Stishov, Phys. Rev. B 32, 484 (1985). https://doi.org/PRBMDO
    A. P. Jephcoat et al., Phys. Rev. Lett. 59, 2670 (1987). https://doi.org/PRLTAO
    K. A. Goettel, J. H. Eggert, I. F. Silvera, W. C. Moss, Phys. Rev. Lett. 62, 665 (1989). https://doi.org/PRLTAO
    R. Reichlin et al., Phys. Rev. Lett. 62, 669 (1989). https://doi.org/PRLTAO
    W. Caldwell et al., Science 277, 930 (1997). https://doi.org/SCIEAS
    R. Reichlin, M. Ross, S. Martin, K. A. Goettel, Phys. Rev. Lett. 56, 2858 (1986). https://doi.org/PRLTAO
    H. K. Mao et al., Science 246, 649 (1989). https://doi.org/SCIEAS
    M. I. Eremets, K. Amaya, K. Shimizu, T. C. Kobayashi, Rev. High Pressure Sci. Technol. 7, 469 (1998).https://doi.org/KKGIE2

  3. 3. A. S. Balchan, H. S. Driekamer, J. Chem. Phys. 34, 1948 (1961). https://doi.org/JCPSA6
    Y. Fujii et al., Phys. Rev. Lett. 58, 796 (1987). https://doi.org/PRLTAO
    R. Reichlin et al., Phys. Rev. B 49, 3725 (1994). https://doi.org/PRBMDO
    K. Shimizu et al., J. Supercond. 7, 921 (1994).https://doi.org/JOUSEH

  4. 4. M. Hanfland, R. J. Hemley, H. K. Mao, Phys. Rev. Lett. 70, 3760 (1993). https://doi.org/PRLTAO
    L. Cui, N. H. Chen, I. F. Silvera, Phys. Rev. Lett. 74, 4011 (1995). https://doi.org/PRLTAO
    B. Edwards, N. W. Ashcroft, Nature, 388, 652 (1997).
    C. F. Richardson, N. W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997). https://doi.org/PRLTAO
    C. Narayana, H. Luo, J. Orloff, A. L. Ruoff, Nature 393, 46 (1998).https://doi.org/NATUAS

  5. 5. P. Loubeyre et al., Nature 383, 702 (1996).https://doi.org/NATUAS

  6. 6. S. T. Weir, A. C. Mitchell, W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).https://doi.org/PRLTAO

  7. 7. L. B. da Silva et al., Phys. Rev. Lett. 78, 483 (1997).https://doi.org/PRLTAO

  8. 8. A. F. Goncharov et al., Science 273, 218 (1996). https://doi.org/SCIEAS
    K. Aoki, H. Yamawaki, M. Sakashita, H. Fujihisa, Phys. Rev. B 54, 15 673 (1996). https://doi.org/PRBMDO
    P. Loubeyre et al., Nature, in press.
    M. Benoit, D. Marx, M. Parrinello, Nature 392, 258 (1998). https://doi.org/NATUAS
    C. Lobban, J. L. Finney, W. F. Kuhs, Nature 391, 268 (1998). https://doi.org/NATUAS
    I. M. Chou et al. Science, in press.

  9. 9. W. J. Nellis, A. C. Mitchell, N. C. Holmes, P. C. McCandless. High Pressure Research: Application to Earth and Planetary Sciences, Y. Syono, M. H. Manghnani, eds., Terra Scientific Publishing/AGU, Tokyo/Washington, DC (1992). p. 387.
    W. J. Nellis, A. C. Mitchell, Bull. Am. Phys. Soc. 43, 408 (1998).https://doi.org/BAPSA6

  10. 10. O. Mishima, L. D. Calvert, E. Whalley, Nature 310, 393 (1984), https://doi.org/NATUAS
    and O. Mishima, L. D. Calvert, E. Whalley, 314, 76 (1985).
    O. Mishima, H. E. Stanley, Nature 392, 164 (1998). https://doi.org/NATUAS
    For general reviews of high‐pressure transitions in liquids, see the following. P. H. Poole, T. Grande, C. A. Angell, P. F. McMillan, Science 275, 322 (1997). https://doi.org/SCIEAS
    V. V. Brazhkin, S. V. Popova, R. N. Voloshin, High Pressure Res. 15, 267 (1997).https://doi.org/HPRSEL

  11. 11. W. L. Vos et al., Nature 358, 46 (1992). https://doi.org/NATUAS
    P. Loubeyre, M. Jean‐Louis, R. LeToullec, L. Charon‐Gérard, Phys. Rev. Lett. 70, 178 (1993). https://doi.org/PRLTAO
    J. A. Schouten, J. Phys.: Cond. Matter 7, 469 (1995).

  12. 12. L. Dubrovinsky et al., Nature 388, 362 (1997). https://doi.org/NATUAS
    D. M. Teter, R. J. Hemley, G. Kresse, J. Hafher, Phys. Rev. Lett. 80, 2145 (1998). https://doi.org/PRLTAO
    R. M. Wentzcovitch, C. da Silva, J. R. Chelikowsky, N. Binggeli, Phys. Rev. Lett. 80, 2149 (1998).https://doi.org/PRLTAO

  13. 13. A. Y. Liu, M. L. Cohen, Science 245, 841 (1989). https://doi.org/SCIEAS
    D. M. Teter, R. J. Hemley, Science 271, 53 (1996). https://doi.org/SCIEAS
    H. Hubert et al., Nature 391, 376 (1998).https://doi.org/NATUAS

  14. 14. S. A. Catledge, Y. K. Vohra, S. T. Weir, J. Akella, J. Phys.: Cond. Matter 9, L67 (1997).
    A. Israel, Y. K. Vohra, Mat. Res. Soc. Symp., in press.

  15. 15. L. J. Parker, T. Atou, J. V. Badding, Science 273, 95 (1996). https://doi.org/SCIEAS
    T. Atou, H. Hasegawa, L. J. Parker, J. V. Badding, J. Am. Chem. Soc. 118, 12 104 (1996).https://doi.org/JACSAT

  16. 16. L. Gao et al., Phys. Rev. B 50, 4260 (1994).https://doi.org/PRBMDO

  17. 17. H. Luo, S. Desgreniers, Y. K. Vohra, A. L. Ruoff, Phys. Rev. Lett. 67, 2998 (1991).https://doi.org/PRLTAO

  18. 18. V. V. Struzhkin, R. J. Hemley, H. K. Mao, Y. Timofeev, Nature 390, 382 (1997). https://doi.org/NATUAS
    S. Kometani et al., J. Phys. Soc. Japan 66, 2564 (1997).https://doi.org/JUPSAU

More about the Authors

Russell J. Hemley. Carnegie Institution of Washington's Geophysical Laboratory and Center for High‐Pressure Research, Washington, D.C..

Neil W. Ashcroft. Cornell University, Ithaca, New York.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1998_08.jpeg

Volume 51, Number 8

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.