Discover
/
Article

The Geophysics of Venus

JUL 01, 1993
Impact craters on Venus’s surface are surprisingly unscarred by tectonic deformation and volcanic flows. Data from the Magellan mission may help discriminate between catastrophic and evolutionary explanations of the planet’s recent placidity.
Sean C. Solomon

Venus is the planet most similar to the Earth in mass, radius and solar distance. Current theories of the early evolution of the solar system suggest that Earth and Venus each formed by the accretion of planetesimals—small rocky or rock‐metal objects—that collectively constituted a well‐mixed sample of material condensed from the inner solar nebula. The bulk compositions of the two planets should thus be similar. The rates of internal heat generation and the energy available to drive interior convection should also be similar. An important difference between the two planets, however, is the character of their atmospheres. The mass of the dominantly CO2 atmosphere of Venus is two orders of magnitude greater, as a fraction of planet mass, than that of Earth’s atmosphere, and the surface temperature is 450 K higher, a consequence of continuous global cloud cover and a runaway greenhouse effect. The mass of H2O in a vertical column of unit area is four to five orders of magnitude less for Venus’s atmosphere than for the atmosphere and hydrosphere on Earth. As a result, the surface of Venus lacks a water cycle, and the processes of weathering, erosion and sediment transport that dominate terrestrial landforms are comparatively unimportant.

This article is only available in PDF format

References

  1. 1. G. H. Pettengill, P. G. Ford, W. T. K. Johnson, R. K. Raney, L. A. Soderblom, Science 252, 260 (1991).https://doi.org/SCIEAS

  2. 2. R. J. Phillips, R. F. Raubertas, R. E. Arvidson, I. C. Sarkar, R. R. Herrick, N. Izenberg, R. E. Grimm, J. Geophys. Res. 97, 15923 (1992).https://doi.org/JGREA2

  3. 3. G. G. Schaber, R. G. Strom, H. J. Moore, L. A. Soderblom, R. L. Kirk, D. J. Chadwick, D. D. Dawson, L. R. Gaddis, J. M. Boyce, J. Russell, J. Geophys. Res. 97, 13257 (1992).https://doi.org/JGREA2

  4. 4. E. M. Shoemaker, R. F. Wolfe, C. S. Shoemaker, Lunar Planet. Sci. 22, 1253 (1991).https://doi.org/LPLSDY

  5. 5. J. W. Head, L. S. Crumpler, J. C. Aubele, J. E. Guest, R. S. Saunders, J. Geophys. Res. 97, 13153 (1992).https://doi.org/JGREA2

  6. 6. S. C. Solomon, S. E. Smrekar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres, E. R. Stofan, J. Geophys. Res. 97, 13199 (1992).https://doi.org/JGREA2

  7. 7. S. E. Smrekar, S. C. Solomon, J. Geophys. Res. 97, 16121 (1992).https://doi.org/JGREA2

  8. 8. Yu. A. Surkov, V. L. Barsukov, L. P. Moskalyeva, V. P. Kharyukova, A. L. Kemurdzhian, J. Geophys. Res. 89, B393 (1986).

  9. 9. W. L. Sjogren, B. G. Bills, P. W. Birkeland, P. B. Esposito, A. R. Konopliv, N. A. Mottinger, S. J. Ritke, R. J. Phillips, J. Geophys. Res. 88, 1119 (1983).https://doi.org/JGREA2

  10. 10. S. E. Smrekar, R. J. Phillips, Earth Planet. Sci. Lett. 107, 582 (1991).https://doi.org/EPSLA2

  11. 11. W. M. Kaula, Science 247, 1191 (1990).https://doi.org/SCIEAS

  12. 12. R. J. Phillips, J. Geophys. Res. 95, 1301 (1990).https://doi.org/JGREA2

  13. 13. D. L. Turcotte, Eos, Fall Suppl. 73, 329 (1992).

  14. 14. R. E. Grimm, S. C. Solomon, J. Geophys.Res. 93, 11911 (1988).

  15. 15. D. T. Sandwell, G. Schubert, J. Geophys. Res. 97, 16069 (1992).

  16. 16. E. M. Parmentier, P. C. Hess, Geophys. Res. Lett. 19, 2015 (1992).https://doi.org/GPRLAJ

  17. 17. J. Arkani‐Hamed, M. N. Toksöz, Phys. Earth Planet. Inter. 34, 232 (1984).https://doi.org/PEPIAM

  18. 18. J. Arkani‐Hamed, Eos, Fall Suppl. 73, 332 (1992).

  19. 19. V. Steinbach, D. A. Yuen, Geophys. Res. Lett. 19, 2243 (1992).https://doi.org/GPRLAJ

  20. 20. R. L. Larson, Geology 19, 547 (1991).https://doi.org/GLGYBA

  21. 21. K. L. Tanaka, N. K. Isbell, D. H. Scott, R. Greeley, J. E. Guest, in Proc. 18th Lunar and Planetary Science Conf., G. Ryder, ed., Cambridge U.P., New York, and Lunar and Planetary Inst., Houston, Tex. (1988), p. 665.

  22. 22. T. Matsui, E. Tajika, Lunar Planet. Sci. 22, 863 (1991).https://doi.org/LPLSDY

  23. 23. S. C. Solomon, Lunar Planet. Sci. 24, 1331 (1993).https://doi.org/LPLSDY

More about the authors

Sean C. Solomon, Department of Terrestrial Magnetism, Carnegie Institution, Washington.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1993_07.jpeg

Volume 46, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.