Discover
/
Article

The Devil’s Staircase

DEC 01, 1986
When the interaction between an oscillator and its driver is strong enough, the oscillator will resonate at, or “lock” onto, an infinity of driving frequencies, giving rise to steps with a fractal dimension between 0 and 1.
Per Bak

In the 17th century the Dutch physicist Christian Huyghens observed that two clocks hanging back to back on the wall tend to synchronize their motion. This phenomenon is known as phase locking, frequency locking or resonance, and is generally present in dynamical systems with two competing frequencies. The two frequencies may arise dynamically within the system, as with Huyghens’s coupled clocks, or through the coupling of an oscillator to an external periodic force, as with the swing and attendant shown in figure 1. If some parameter is varied—the length of a pendulum or the frequency of the force that drives it, for instance—the system will pass through regimes that are phase locked and regimes that are not. When systems are phase locked the ratio between their frequencies is a rational number. For weak coupling the phase‐locked intervals are narrow, so that even if there is an infinity of intervals, the motion is quasiperiodic for most driving frequencies; that is, the ratio between the two frequencies is more likely to be irrational. When the coupling increases, the phase‐locked portions increase, and it becomes less likely that the motion is quasiperiodic. This is a unique situation, where it makes sense, despite experimental uncertainty, to ask whether a physical quantity is rational or irrational.

This article is only available in PDF format

References

  1. 1. C. Huyghens, letter to his father, dated 26 February 1665. Oeuvres completes des Christian Huyghens, M. Nijhoff, ed., Societé Hollandaise des Sciences, The Hague, The Netherlands (1893), vol. 5, p. 243. I am grateful to Carson Jeffries and Paul Bryant for bringing this reference to my attention.

  2. 2. V. N. Belykh, N. F. Pedersen, O. H. Sorensen, Phys. Rev. B 16, 4860 (1977).https://doi.org/PLRBAQ

  3. 3. J. Maselko, H. L. Swinney, Phys. Scr. T9, 35 (1985).https://doi.org/PHSTBO

  4. 4. S. Martin, W. Martienssen, Phys. Rev. Lett. 56, 1522 (1986).https://doi.org/PRLTAO

  5. 5. A. P. Fein, M. S. Heutmacher, J. P. Gollub, Phys. Scr. T9, 79 (1985).https://doi.org/PHSTBO

  6. 6. J. Stavans, F. Heslot, A. Libchaber, Phys. Rev. Lett. 55, 596 (1985).https://doi.org/PRLTAO

  7. 7. S. E. Brown, G. Mozurkewich, G. Grüner, Phys. Rev. Lett. 52, 2277 (1984).https://doi.org/PRLTAO

  8. 8. M. R. Guevara, L. Glass, A. Shrier, Science 214, 1350 (1980).https://doi.org/SCIEAS

  9. 9. L. D. Harmon, Kybernetik 1, 89 (1961). https://doi.org/KYBEAP
    T. Allen, Physica D 6, 305 (1983).https://doi.org/PDNPDT

  10. 10. M. H. Jensen, P. Bak, T. Bohr, Phys. Rev. Lett. 50, 1637 (1983); https://doi.org/PRLTAO
    M. H. Jensen, P. Bak, T. Bohr, Phys. Rev. A 30, 1960, 1970 (1984). https://doi.org/PLRAAN
    P. Bak, T. Bohr, M. H. Jensen, Phys. Scr. T9, 50 (1985). https://doi.org/PHSTBO
    See also P. Cvitanovic, M. H. Jensen, L. P. Kadanoff, I. Procaccia, Phys. Rev. Lett. 55, 343 (1985).https://doi.org/PRLTAO

  11. 11. A. Loiseau, G. Van Tendeloo, R. Portier, F. Ducastelle, J. Phys. (Paris) 46, 595 (1985).https://doi.org/JOPQAG

  12. 12. Y. Komura, Y. Kitano, Acta Crystallogr. Sect. B 33, 2496 (1977).

  13. 13. D. Gibbs, D. E. Moncton, K. L. D’Amico, J. Bohr, B. H. Grier, Phys. Rev. Lett. 55, 234 (1985).https://doi.org/PRLTAO

  14. 14. P. Fischer, B. Lebech, G. Meier, B. D. Rainford, O. Vogt, J. Phys. C 11, 346 (1977). https://doi.org/JPSOAW
    J. Rossat‐Mignod, P. Burlet, J. Villain, H. Bartholin, W. Tcheng‐Si, D. Florence, O. Vogt, Phys. Rev. B 16, 440 (1977).https://doi.org/PLRBAQ

  15. 15. M. J. Winokur, R. Clarke, Phys. Rev. Lett. 56, 2072 (1986).https://doi.org/PRLTAO

  16. 16. P. Bak, R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982); https://doi.org/PRLTAO
    P. Bak, R. Bruinsma, Phys. Rev. B 27, 5824 (1983).https://doi.org/PRBMDO

  17. 17. P. Bak, J. von Boehm, Phys. Rev. Lett. 42, 122 (1978); https://doi.org/PRLTAO
    P. Bak, J. von Boehm, Phys. Rev. B 21, 5297 (1980).https://doi.org/PRBMDO

  18. 18. W. J. Yeh, D.‐R. He, Y. H. Kao, Phys. Rev. Lett. 52, 480 (1984).https://doi.org/PRLTAO

  19. 19. P. Alstrom, M. T. Levinsen, Phys. Rev. B 31, 2753 (1985).https://doi.org/PRBMDO

  20. 20. R. Bruinsma, A. Zangwill, Phys. Rev. Lett. 55, 214 (1985).https://doi.org/PRLTAO

  21. 21. D. Levine, P. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).https://doi.org/PRLTAO

More about the Authors

Per Bak. Brookhaven National Laboratory, Upton, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1986_12.jpeg

Volume 39, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.