Discover
/
Article

Spectroscopy and Imaging with Diffusing Light

MAR 01, 1995
Diffusing near‐infrared light provides new mechanisms for clinical diagnosis of tissue structure and function.
Arjun Yodh
Britton Chance

Visually opaque media are ubiquitous in nature. While some materials are opaque because they strongly absorb visible light, others, such as loam, white paint, biological tissue and milk, are opaque because photons traveling within them are predominantly scattered rather than absorbed. A vanishingly small number of photons travel straight through such substances. Instead, light is transported through these materials in a process similar to heat diffusion (figure 1).

This article is only available in PDF format

References

  1. 1. G. Maret, P. E. Wolf, Z. Phys. B 65, 409 (1987). https://doi.org/ZPCMDN
    M. J. Stephen, Phys. Rev. B 37, 1 (1988). https://doi.org/PRBMDO
    D. J. Pine, D. A. Weitz, P. M. Chaikin, E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).https://doi.org/PRLTAO

  2. 2. See, for example, A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic, New York (1978).
    S. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor Theory, Van Nostrand, New York (1952) chs. 5, 14.
    K. M. Case, P. F. Zweifel, Linear Transport Theory, Addison‐Wesley, Reading, Mass. (1967) ch. 8 and references therein.

  3. 3. J. R. Singer, F. A. Grunbaum, P. Kohn, J. Zubelli, Science 248, 990 (1990). https://doi.org/SCIEAS
    F. F. Jobsis, Science 198, 1264 (1977). https://doi.org/SCIEAS
    For many examples of continuous‐wave imaging with diffuse light, see work in the field of diaphanography: M. Kaneko et al., Radiat. Medicine 6, 61 (1988) and references therein.

  4. 4. M. S. Patterson, B. Chance, B. C. Wilson, Appl. Opt. 28, 2331 (1989). https://doi.org/APOPAI
    B. Chance et al., Proc. Natl. Acad. Sci. USA 85, 4971 (1988). https://doi.org/PNASA6
    D. T. Delpy, M. Cope, P. van de Zee, S. Arridge, S. Wray, J. Wyatt, Phys. Med. Biol. 33, 1433 (1988). https://doi.org/PHMBA7
    S. L. Jacques, Appl. Opt. 28, 2223 (1989). https://doi.org/APOPAI
    D. A. Benaron, D. K. Stevenson, Science 259, 1463 (1993).https://doi.org/SCIEAS

  5. 5. J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, in Proc. Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., SPIE, Bellingham, Wash. (1992), p. 384.

  6. 6. E. Gratton, W. Mantulin, M. J. van de Ven, J. Fishkin, M. Maris, B. Chance, in Proc. 3rd Int. Conf. Peace Through Mind/Brain Science, Y. Yamashita, ed., Hamamatsu Photonics, Hamamatsu, Japan (1990), p. 183.
    J. Fishkin, E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).https://doi.org/JOAOD6

  7. 7. J. M. Schmitt, A. Knuttel, J. R. Knutson, J. Opt. Soc. Am. A 9, 1832 (1992). https://doi.org/JOAOD6
    A. Knuttel, J. M. Schmitt, J. R. Knutson, Appl. Opt. 32, 381 (1993). https://doi.org/APOPAI
    A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, Rev. Sci. Instrum. 46, 638 (1993).https://doi.org/RSINAK

  8. 8. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, Phys. Rev. Lett. 69, 2658 (1992).https://doi.org/PRLTAO

  9. 9. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, Phys. Rev. E 47, R2999 (1993). https://doi.org/PLEEE8
    M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, J. Lumin. 60–61, 281 (1994).https://doi.org/JLUMA8

  10. 10. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, R. C. Haskell, Appl. Opt. 32, 607 (1993). https://doi.org/APOPAI
    E. M. Sevick, J. Lakowicz, H. Szmacinski, K. Nowacyzk, M. L. Johnson, J. Photochem. Photobiol. B 16, 169 (1992).

  11. 11. M. Takada, T. Tamura, M. Tamura, Adv. Exp. Med. Biol. 215, 301 (1987). https://doi.org/AEMBAP
    H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1993) p. 372.
    M. Kashke, H. Jess, G. Gaida, J.‐M. Kaltenbach, W. Wrobel, in Proc. Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Opt. Soc. Am., Washington, D.C. (1994) p. 88.

  12. 12. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford U.P., Oxford, England (1959).

  13. 13. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994). https://doi.org/PNASA6
    For similar calculations and measurements for small objects and continuous sources, see P. N. den Outer, Th. M. Nieuwenhuizen, A. Lagendijk, J. Opt. Soc. Am. A 10, 1209 (1993).

  14. 14. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, Opt. Lett. 20, 426 (1995).https://doi.org/OPLEDP

  15. 15. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).https://doi.org/SCIEAS

  16. 16. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, Cell Biophys. 23, 91 (1993). https://doi.org/CBIODE
    B. Beauvoit, S. M. Evans, T. Jenkins, E. Miller, B. Chance, to be published in Anal. Biochem.

  17. 17. M. Kohl, M. Essenpries, D. Booker, M. Cope, in Proc. Conf Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1995).

  18. 18. S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, J. Neurosurg. 79, 43 (1993).https://doi.org/JONSAC

  19. 19. C. D. Kurth, J. M. Steven, S. C. Nicolson, Anesthesiology 82, 74 (1995).https://doi.org/ANESAV

  20. 20. D. T. Delpy, S. R. Arridge, M. Cope, Adv. Exp. Med. Biol. 248, 41 (1989). https://doi.org/AEMBAP
    E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, Anal. Biochem. 195, 330 (1991).https://doi.org/ANBCA2

  21. 21. B. Chance, Z. Zhuang, C. Unah, C. Alter, L. Lipton, Proc. Natl. Acad. Sci. USA 90, 3770 (1993).https://doi.org/PNASA6

  22. 22. S. R. Arridge, in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, ed., SPIE, Bellingham, Wash. (1993), p. 31.
    S. R. Arridge, P. van de Zee, M. Cope, D. T. Delpy, in Proc. Time‐Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., SPIE, Bellingham, Wash. (1991), p. 204.
    M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, in Proc. Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Opt. Soc. Am., Washington, D.C. (1994), p. 106.
    J. C. Schotland, J. C. Haselgrove, J. S. Leigh, Appl. Opt. 32, 448 (1993).https://doi.org/APOPAI

  23. 23. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE, New York (1988).

  24. 24. S. Smith, W. J. Levy, S. Carter, M. Haida, B. Chance, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1993), p. 511.

More about the Authors

Arjun Yodh. University of Pennsylvania, Philadelphia.

Britton Chance. University of Pennsylvania, Philadelphia.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1995_03.jpeg

Volume 48, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.