Discover
/
Article

Solid electrolytes—the beta aluminas

JUL 01, 1982
Materials in which lattice defects allow ions to flow rapidly have interesting physical properties and important applications in new electrochemical devices such as sodium–sulfur batteries.

DOI: 10.1063/1.2915170

John B. Bates
Jia‐Chao Wang
Nancy J. Dudney

Electrolytes conduct electricity by the movement of ions, whereas metals conduct by the flow of electrons. Until recently, almost all electrolytes known to have high conductivities were liquids, such as molten salts or aqueous solutions of salts. But research over the last twenty years has uncovered many solid electrolytes—substances that have a high ionic conductivity even though they are insulators to the flow of electrons. Physicists often call these solids “superionic conductors” because a number of the compounds have electrical conductivities comparable with those of liquid electrolytes. (But we will avoid this term to prevent a possible mistaken identification with superconductors.)

This article is only available in PDF format

References

  1. 1. Superionic Conductors, G. D. Mahan, W. L. Roth, eds., Plenum, New York (1976).

  2. 2. Solid Electrolytes, S. Geller, ed., Springer–Verlag, New York (1977).

  3. 3. Solid Electrolytes: General Principles, Characterization, Materials, and Applications, P. Hagenmuller, W. Van Gool, eds. Academic, New York (1978).

  4. 4. Physics of Superionic Conductors, M. B. Salamon, ed., Springer–Verlag, New York (1979).

  5. 5. Fast Ion Transport in Solids, Electrodes and Electrolytes, Proc. Int. Conf. Fast Ion Transport in Solids, Electrodes and Electrolytes, Lake Geneva, Wisconsin, 21–25 May 1979,
    P. Vashishta, J. N. Mundy, G. K. Shenoy, eds., North‐Holland, New York (1979).

  6. 6. Proc. 3rd Int. Meeting on Solid Electrolytes—Solid State Ionics and Galvanic Cells, Tokyo, Japan, 15–19 September 1980,
    T. Takahashi, K. Fueki, B. B. Owens, C. A. Vincent, eds., Solid State Ionics, 3–4 (1981).

  7. 7. Fast Ionic Transport in Solids, Proc. Int. Conf. Fast Ionic Transport In Solids, Gatlinburg, Tennessee, 18–22 May 1981,
    J. B. Bates, G. C. Farrington, eds., North‐Holland, New York (1981);
    Solid State Ionics 5 (1981).

  8. 8. J. T. Kummer, in Progress in Solid State Chemistry, H. Reiss, J. O. McCaldin, eds., Pergamon, New York (1972), volume 7, page 141.

  9. 9. L. R. Rothrock, J. Crystal Growth 39, 180 (1977).

  10. 10. Y.‐F. Y. Yao, J. T. Kummer, J. Inorg. Nucl. Chem. 29, 2453 (1967).

  11. 11. B. Dunn, G. C. Farrington, Mat. Res. Bull. 15, 1773 (1980).

  12. 12. C. R. Peters, M. Bettman, J. W. Moore, M. D. Glick, Acta Cryst. B27, 1826 (1971);
    M. Bettman, C. R. Peters, J. Phys. Chem. 73, 1774 (1969).https://doi.org/JPCHAX

  13. 13. J. C. Wang, M. Gaffari, S. Choi, J. Chem. Phys. 63, 772 (1975).https://doi.org/JCPSA6

  14. 14. H. Engstrom, J. B. Bates, J. C. Wang, Solid State Commun. 35, 543 (1980); https://doi.org/SSCOA4
    H. Engstrom, J. B. Bates, W. E. Brundage, J. C. Wang, Solid State Ionics 2, 265 (1981).

  15. 15. S. J. AllenJr., A. S. Cooper, F. DeRosa, J. P. Remeika, S. K. Ulasi, Phys. Rev. B 17, 4031 (1978).

  16. 16. J. P. Boilot, G. Collin, Ph. Colomban, R. Comes, Phys. Rev. B 22, 5912 (1980).

  17. 17. G. V. Chandrashekhar, L. M. Foster, Solid State Commun. 27, 269 (1978).https://doi.org/SSCOA4

  18. 18. F. G. Will, J. Electrochem. Soc. 123, 834 (1976).

  19. 19. T. Kaneda, J. B. Bates, J. C. Wang, H. Engstrom, Mat. Res. Bull. 14, 1053 (1979).

  20. 20. R. D. Armstrong, D. P. Sellick, Electrochem. Acta 25, 1199 (1980).

  21. 21. B. Dunn, J. Am. Ceram. Soc. 64, 125 (1981).https://doi.org/JACTAW

  22. 22. N. J. Dudney, J. B. Bates, J. C. Wang, Phys. Rev. B 24, 6831 (1981).

  23. 23. M. S. Whittingham, Prog. Solid State Chem. 12, 41 (1978); https://doi.org/PSSTAW
    D. W. Murphy, P. A. Christian, Science 205, 651 (1979).https://doi.org/SCIEAS

More about the Authors

John B. Bates. Union Carbide Corporation.

Jia‐Chao Wang. Union Carbide Corporation.

Nancy J. Dudney. Union Carbide Corporation.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1982_07.jpeg

Volume 35, Number 7

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.