Discover
/
Article

Solar Neutrino Experiments: The Next Generation

JUL 01, 1996
Three big new detectors are addressing: the puzzle of the persistent solar‐neutrino deficit. Is it the Sun, or the neutrino, that’s behaving so strangely? We may soon know for certain.
John N. Bahcall
Frank Calaprice
Arthur B. McDonald
Yoji Totsuka

In the next few years, three massive new solar neutrino detectors will generate large amounts of precise data that should have a major impact on our understanding of how the Sun shines and how neutrinos behave. They are Super Kamiokande, in the mountains west of Tokyo; the Sudbury Neutrino Observatory (SNO) in a northern Ontario mine and Borexino, in the Apennines east of Rome. Each of these detectors was conceived and is being built by a sizable international collaboration. Each is housed in an underground laboratory shielded from cosmic ray products other than neutrinos and very energetic muons by a mile or so of earth. Super Kamiokande, the most massive of the three, is a 50‐kiloton water‐Cerenkov detector. (See figure 1 and the cover of this issue.) In all of these new detectors, sophisticated electronics will record and analyze the individual neutrino collision events. Each detector will register more neutrino interactions in two months than all of the previous solar neutrino experiments have detected in a quarter of a century.

This article is only available in PDF format

References

  1. 1. M. Takita, in Frontiers of Neutrino Astrophysics, Y. Suzuki, K. Nakamura, eds., Universal Academy P., Tokyo, 1993, p. 147.
    T. Kajita, ICRR (U. of Tokyo) report 185‐89‐2 (1989).

  2. 2. H. Chen, Phys. Rev. Lett. 55, 1534 (1985). https://doi.org/PRLTAO
    G. Ewan et al., Sudbury Neutrino Observatory proposal SNO‐87‐12 (1987).
    A. McDonald, in Proc. Ninth Lake Louise Winter Inst., A. Astbury et al., eds., World Scientific, Singapore (1994) p. 1.

  3. 3. C. Arpesella et al., Borexino proposal, Vols. 1 and 2, U. of Milan, 1992.
    J. Benziger, F. Calaprice, R. Vogelaar, “Borexino, A Real‐Time Detector for Low‐Energy Solar Neutrinos,” Princeton U. proposal to NSF (1992).
    R. Raghavan, Science 267, 45 (1995). https://doi.org/SCIEAS

  4. 4. J. Bahcall, Phys. Rev. Lett. 12, 300 (1964). https://doi.org/PRLTAO
    R. DavisJr, Phys. Rev. Lett. 12, 303 (1964).https://doi.org/PRLTAO

  5. 5. S. Glashow, Nucl. Phys. 22, 579 (1961). https://doi.org/NUPHA7
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). https://doi.org/PRLTAO
    A. Salam, in Elementary Particle Theory, N. Svartholm, ed., Almqvist and Wiskells, Stockholm (1968) p. 367.

  6. 6. J. Bahcall, R. Ulrich, Rev. Mod. Phys. 60, 297 (1988).https://doi.org/RMPHAT

  7. 7. B. Cleveland et al., Nucl. Phys. B 38, 47 (1995). https://doi.org/NUPBBO
    R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994).

  8. 8. P. Anselmann et al., (Gallex collab.), Phys. Lett. B 327, 377 (1994); https://doi.org/PYLBAJ
    P. Anselmann, 342, 440 (1995).

  9. 9. G. Nico et al. (SAGE collab.), in Proc. XXVII Int. Conf. On High Energy Phys., Glasgow 1994,
    P. Bussey, I. Knowles, eds., IOP, Bristol (1995), p. 965.
    J. Abdurashitov et al., Phys. Lett. B 328, 234 (1994).

  10. 10. Y. Suzuki et al., (Kamiokande collab.), Nucl. Phys. B 38, 54 (1995).https://doi.org/NUPBBO

  11. 11. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968). https://doi.org/SPHJAR
    J. Bahcall, S. Frautschi, Phys. Lett. B 29, 623 (1969). https://doi.org/PYLBAJ
    S. Bilenky, B. Pontecorvo, Phys. Reports 41, 225 (1978).
    S. Glashow, L. Krauss, Phys. Lett. B 190, 199 (1987).https://doi.org/PYLBAJ

  12. 12. S. Mikheyev, A. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985). https://doi.org/SJNCAS
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).https://doi.org/PRVDAQ

  13. 13. J. Bahcall, Phys. Rev. D. 44, 1644 (1991).

  14. 14. J. Bahcall, M. Pinsonneault, Rev. Mod. Phys. 67, 1 (1995).https://doi.org/RMPHAT

  15. 15. J. Bahcall, Neutrino Astrophysics, Cambridge U.P., Cambridge, England, 1989.

More about the Authors

John N. Bahcall. Institute for Advanced Study, Princeton, New Jersey.

Frank Calaprice. Princeton University.

Arthur B. McDonald. Queens University, Kingston, Ontario.

Yoji Totsuka. Institute for Cosmic Ray Research, University of Tokyo's.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1996_07.jpeg

Volume 49, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.