Discover
/
Article

Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion

SEP 01, 1992
To achieve efficient inertial confinement fusion one must produce a small hot spot within the imploding target from which thermonuclear burn can ignite.
John D. Lindl
Robert L. McCrory
E. Michael Campbell

For the past four decades, scientists throughout the world have pursued the dream of controlled thermonuclear fusion. The attraction of this goal is the enormous energy that is potentially available in fusion fuels and the view of fusion as a safe, clean energy source. The fusion reaction with the highest cross section uses the deuterium and tritium isotopes of hydrogen, and D‐T would be the fuel of choice for the first generation of fusion reactors. (See the article by J. Geoffrey Cordey, Robert J. Goldston and Ronald R. Parker, January, page 22.)

This article is only available in PDF format

References

  1. 1. J. H. Nuckolls, L. Wood, A. Thiessen, G. B. Zimmerman, Nature 239, 139 (1972).https://doi.org/NATUAS

  2. 2. Natl. Acad. Sci., “Review of the Department of Energy’s Inertial Confinement Fusion Program,” final Report, Natl. Acad. P., Washington, D.C. (September 1990).

  3. 3. J. D. Lindl, in International School of Plasma Physics Piero Caldirola: Inertial Confinement Fusion, A. Caruso, E. Sindoni, eds., Società Italiana di Fisica, Bologna (1988), p. 617.

  4. 4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford U.P., Glasgow (1961), p. 428.

  5. 5. E. M. Campbell, Rev. Sci. Instrum. 57, 2101 (1986).https://doi.org/RSINAK

  6. 6. R. S. Craxton, Opt. Commun. 34, 474 (1980).https://doi.org/OPCOB8

  7. 7. W. L. Kruer, Physics of Laser Plasma Interactions, Addison‐Wesley, Redwood City, Calif. (1988).

  8. 8. R. Sigel et al., Phys. Rev. Lett. 65, 587 (1990), and references within.https://doi.org/PRLTAO

  9. 9. Fusion Policy Advisory Committee Final Report, DOE/S‐0081, Department of Energy, Washington D.C. (September 1990).

  10. 10. E. M. Campbell, “The Physics of Megajoule, Large‐Scale and Ultrafast Short‐Scale Laser Plasmas,” to be published in Phys. Fluids B.

  11. 11. J. D. Lindl, in Fusion to Light Surfing, T. Katsouleas, ed., Addison‐Wesley, Redwood City, Calif. (1991), p. 177.

  12. 12. G. Glendinning, “Laser‐Driven Planar Rayleigh‐Taylor Instability Experiments,” pub. UCRL‐LR‐105821‐92‐1, Lawrence Livermore Natl. Lab., Livermore, Calif. (1991).

  13. 13. B. A. Remington, S. W. Haan, S. G. Glendinning, J. D. Kilkenny, D. H. Munro, R. J. Wallace, Phys. Rev. Lett. 67, 3259 (1991).https://doi.org/PRLTAO

  14. 14. H. Takabe, K. Mimo, L. Montierth, R. L. Morse, Phys. Fluids 28, 3676 (1985).https://doi.org/PFLDAS

  15. 15. M. Tabak, D. H. Munro, J. D. Lindl, Phys. Fluids B 2, 1007 (1990).https://doi.org/PFBPEI

  16. 16. R. S. Craxton, R. L. McCrory, J. M. Soures, Sci. Am. 255, 68 (1986).https://doi.org/SCAMAC

  17. 17. R. L. McCrory et al., Nature 335, 225 (1988).https://doi.org/NATUAS

  18. 18. H. Azechi et al., Lasers and Particle Beams 9, 193 (1991).

  19. 19. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka, Phys. Rev. Lett. 53, 1057 (1984).https://doi.org/PRLTAO

  20. 20. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, J. Appl. Phys. 66, 3456 (1989).https://doi.org/JAPIAU

  21. 21. R. Lemburg, A. Schmitt, S. Bodner, J. Appl. Phys. 62, 2680 (1987).https://doi.org/JAPIAU

  22. 22. S. Haan, Phys. Rev. A 39, 5812 (1989).https://doi.org/PLRAAN

  23. 23. E. M. Campbell, J. Fusion Energy 10, 277 (1991).https://doi.org/JFENDS

  24. 24. T. R. Boehly et al., “The Upgrade to the Omega Laser System,” (January 1992), to be published in Proc. SPIE OE/ LASE.

More about the authors

John D. Lindl, Lawrence Livermore National Laboratory, Livermore, California.

Robert L. McCrory, University of Rochester, Rochester, New York.

E. Michael Campbell, Lawrence Livermore.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_09.jpeg

Volume 45, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.