Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion
DOI: 10.1063/1.881318
For the past four decades, scientists throughout the world have pursued the dream of controlled thermonuclear fusion. The attraction of this goal is the enormous energy that is potentially available in fusion fuels and the view of fusion as a safe, clean energy source. The fusion reaction with the highest cross section uses the deuterium and tritium isotopes of hydrogen, and D‐T would be the fuel of choice for the first generation of fusion reactors. (See the article by J. Geoffrey Cordey, Robert J. Goldston and Ronald R. Parker, January, page 22.)
This article is only available in PDF format
References
1. J. H. Nuckolls, L. Wood, A. Thiessen, G. B. Zimmerman, Nature 239, 139 (1972).https://doi.org/NATUAS
2. Natl. Acad. Sci., “Review of the Department of Energy’s Inertial Confinement Fusion Program,” final Report, Natl. Acad. P., Washington, D.C. (September 1990).
3. J. D. Lindl, in International School of Plasma Physics Piero Caldirola: Inertial Confinement Fusion, A. Caruso, E. Sindoni, eds., Società Italiana di Fisica, Bologna (1988), p. 617.
4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford U.P., Glasgow (1961), p. 428.
5. E. M. Campbell, Rev. Sci. Instrum. 57, 2101 (1986).https://doi.org/RSINAK
6. R. S. Craxton, Opt. Commun. 34, 474 (1980).https://doi.org/OPCOB8
7. W. L. Kruer, Physics of Laser Plasma Interactions, Addison‐Wesley, Redwood City, Calif. (1988).
8. R. Sigel et al., Phys. Rev. Lett. 65, 587 (1990), and references within.https://doi.org/PRLTAO
9. Fusion Policy Advisory Committee Final Report, DOE/S‐0081, Department of Energy, Washington D.C. (September 1990).
10. E. M. Campbell, “The Physics of Megajoule, Large‐Scale and Ultrafast Short‐Scale Laser Plasmas,” to be published in Phys. Fluids B.
11. J. D. Lindl, in Fusion to Light Surfing, T. Katsouleas, ed., Addison‐Wesley, Redwood City, Calif. (1991), p. 177.
12. G. Glendinning, “Laser‐Driven Planar Rayleigh‐Taylor Instability Experiments,” pub. UCRL‐LR‐105821‐92‐1, Lawrence Livermore Natl. Lab., Livermore, Calif. (1991).
13. B. A. Remington, S. W. Haan, S. G. Glendinning, J. D. Kilkenny, D. H. Munro, R. J. Wallace, Phys. Rev. Lett. 67, 3259 (1991).https://doi.org/PRLTAO
14. H. Takabe, K. Mimo, L. Montierth, R. L. Morse, Phys. Fluids 28, 3676 (1985).https://doi.org/PFLDAS
15. M. Tabak, D. H. Munro, J. D. Lindl, Phys. Fluids B 2, 1007 (1990).https://doi.org/PFBPEI
16. R. S. Craxton, R. L. McCrory, J. M. Soures, Sci. Am. 255, 68 (1986).https://doi.org/SCAMAC
17. R. L. McCrory et al., Nature 335, 225 (1988).https://doi.org/NATUAS
18. H. Azechi et al., Lasers and Particle Beams 9, 193 (1991).
19. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka, Phys. Rev. Lett. 53, 1057 (1984).https://doi.org/PRLTAO
20. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, J. Appl. Phys. 66, 3456 (1989).https://doi.org/JAPIAU
21. R. Lemburg, A. Schmitt, S. Bodner, J. Appl. Phys. 62, 2680 (1987).https://doi.org/JAPIAU
22. S. Haan, Phys. Rev. A 39, 5812 (1989).https://doi.org/PLRAAN
23. E. M. Campbell, J. Fusion Energy 10, 277 (1991).https://doi.org/JFENDS
24. T. R. Boehly et al., “The Upgrade to the Omega Laser System,” (January 1992), to be published in Proc. SPIE OE/ LASE.
More about the Authors
John D. Lindl. Lawrence Livermore National Laboratory, Livermore, California.
Robert L. McCrory. University of Rochester, Rochester, New York.
E. Michael Campbell. Lawrence Livermore.