Discover
/
Article

Polar Stratospheric Clouds and the Ozone Hole

DEC 01, 1991
Clouds of frozen nitric acid particles that form in the polar winter stratosphere are a crucial element in the massive springtime ozone depletion over Antarctica.

DOI: 10.1063/1.881277

Patrick Hamill
Owen Brian Toon

During the winter clouds appear in the Arctic and the Antarctic stratospheres. These clouds have been observed for over a century, and during most of that time they were considered an interesting and beautiful but relatively unimportant phenomenon. Recently, however, atmospheric scientists have found a critical relationship between the massive springtime ozone depletion over Antarctica and the formation of polar stratospheric clouds. (See figure 1.) In this article we outline the general properties of the three main types of stratospheric aerosols, and we show how changes in the levels of stratospheric nitrogen and chlorine species required for ozone depletion are dependent upon the formation of polar stratospheric clouds.

This article is only available in PDF format

References

  1. 1. J. C. Farman, B. G. Gardiner, J. D. Shanklin, Nature 315, 207 (1985).https://doi.org/NATUAS

  2. 2. D. J. Hofmann, J. W. Harder, S. R. Rolf, J. M. Rosen, Nature 322, 59 (1987).https://doi.org/NATUAS

  3. 3. M. J. Molina, F. S. Rowland, Nature 249, 810 (1974).https://doi.org/NATUAS

  4. 4. J. G. Anderson, D. W. Toohey, W. H. Brune, Science 251, 39 (1991).https://doi.org/SCIEAS

  5. 5. L. T. Molina, M. J. Molina, J. Phys. Chem. 91, 433 (1987).https://doi.org/JPCHAX

  6. 6. M. B. McElroy, R. J. Salawitch, S. C. Wofsy, J. A. Logan, Nature 321, 759 (1986).https://doi.org/NATUAS

  7. 7. S. Solomon, Nature 347, 347 (1990).https://doi.org/NATUAS

  8. 8. M. P. McCormick, H. M. Steele, P. Hamill, W. P. Chu, T. J. Swissler, J. Atmos. Sci. 39, 1387 (1982).https://doi.org/JAHSAK

  9. 9. S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, Nature 321, 755 (1986). https://doi.org/NATUAS
    M. B. McElroy, R. J. Salawich, S. C. Wofsy, Geophys. Res. Lett. 13, 1296 (1986).https://doi.org/GPRLAJ

  10. 10. O. B. Toon, P. Hamill, R. P. Turco, J. Pinto, Geophys. Res. Lett. 13, 1284 (1986). https://doi.org/GPRLAJ
    P. J. Crutzen, F. Arnold, Nature 21, 651 (1986).https://doi.org/NATUAS

  11. 11. M. J. Molina, T. Tso, L. T. Molina, F. C.‐Y. Wang, Science 238, 1253 (1987).https://doi.org/SCIEAS

  12. 12. C. S. Kiang, D. Stauffer, Faraday Symp. 7, 26 (1973).

  13. 13. P. Hamill, O. B. Toon, R. P. Turco, Geophys. Res. Lett. 17, 417 (1990).https://doi.org/GPRLAJ

  14. 14. B. J. Hofmann, J. M. Rosen, J. W. Harder, J. V. Hereford, J. Geophys. Res. 94, 11, 253 (1989). https://doi.org/JGREA2
    J. C. Wilson, M. Lowenstein, B. W. Fahey, B. Gary, S. D. Smith, K. K. Kelly, G. V. Ferry, K. R. Chan, J. Geophys. Res. 94, 16, 437 (1989).https://doi.org/JGREA2

  15. 15. C. M. Reihs, D. M. Golden, M. A. Tolbert, J. Geophys. Res. 95, 16, 545 (1990).https://doi.org/JGREA2

  16. 16. P. A. Mayewski, M. R. Legrand, Nature 346, 258 (1990).https://doi.org/NATUAS

  17. 17. D. R. Hanson, K. Mauersberger, Geophys. Res. Lett. 15, 855 (1988). https://doi.org/GPRLAJ
    B. R. Hanson, Geophys. Res. Lett. 17, 421 (1990).https://doi.org/GPRLAJ

  18. 18. B. W. Gandrud, P. D. Sperry, L. Sanford, K. K. Kelly, G. V. Ferry, K. H. Chan, J. Geophys. Res. 94, 11, 285 (1989).https://doi.org/JGREA2

  19. 19. D. H. Fahey, K. K. Kelly, G. V. Ferry, L. R. Poole, J. C. Wilson, D. M. Murphy, M. Loewenstein, K. R. Chan, J. Geophys. Res. 94, 11, 299 (1989).https://doi.org/JGREA2

  20. 20. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, A. F. Tuck, Geophys. Res. Lett. 17, 385 (1990).https://doi.org/GPRLAJ

  21. 21. O. B. Toon, R. F. Pueschel, K. G. Snetsinger, J. Geophys. Res. 94, 16, 449 (1989).https://doi.org/JGREA2

  22. 22. S. B. Moore, L. F. Keyser, M. T. Leu, R. P. Turco, R. H. Smith, Nature 345, 333 (1990).https://doi.org/NATUAS

More about the Authors

Patrick Hamill. San Jose State University, San Jose, California.

Owen Brian Toon. NASA Ames Research Center, Moffett Field, California.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1991_12.jpeg

Volume 44, Number 12

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.