Discover
/
Article

New Magnetic Superconductors: A Toy Box for Solid‐State Physicists

OCT 01, 1998
Rare earth nickel borocarbide compounds are rekindling interest in the decades‐old question of how superconductivity and magnetism coexist, and some remarkable answers are emerging.

DOI: 10.1063/1.882396

Paul C. Canfield
Peter L. Gammel
David J. Bishop

Over the past decade, discussion of the interaction between superconductivity and magnetism has been overshadowed by the omnipresence of the oxide‐based, high‐temperature superconductors. But interest in the interaction between these two generally competing effects has a history that predates high‐Tc materials by several decades. Starting with seminal work by Bernd Matthias and his coworkers, it was found that magnetic impurities strongly suppress superconductivity in pure elements and binary compounds. This rapid suppression of the superconducting transition temperature Tc was due to the local magnetic moment of the impurity preventing the formation of the spin‐up/spin‐down conduction‐electron pairs that are responsible for superconductivity. The early measurements were made on dilute alloys, and for many solid‐state physicists of the time, the quest was to find compounds in which superconductivity coexists with an ordered lattice of local magnetic moments.

This article is only available in PDF format

References

  1. 1. For reviews, see the following: K. Buschow, E. Wohlfarth, eds., Ferromagnetic Materials, Elsevier, Amsterdam (1990),
    chap. 6. M. B. Maple, O. Fisher, eds., Superconductivity in Ternary Compounds II, Springer‐Verlag, Berlin (1982).

  2. 2. R. J. Cava et al., Nature 367, 146 (1994). https://doi.org/NATUAS
    R. J. Cava et al., Nature 367, 252 (1994). https://doi.org/NATUAS
    T. Siegrist et al., Nature 367, 254 (1994).https://doi.org/NATUAS

  3. 3. V. G. Kogan et al., Phys. Rev. B 55, R8693 (1997). https://doi.org/PRBMDO
    V. G. Kogan et al., Phys. Rev. Lett. 79, 741 (1997).

  4. 4. P. Dervenagas et al., Phys. Rev. B 53, 8506 (1996). https://doi.org/PRBMDO
    C. Stassis et al., Phys. Rev. B 55, R8678 (1997). https://doi.org/PRBMDO
    M. Bullock et al., Phys. Rev. B 57, 7916 (1998).https://doi.org/PRBMDO

  5. 5. U. Yaron et al., Nature 382, 236 (1996). https://doi.org/NATUAS
    M. R. Eskildsen et al., Phys. Rev. Lett. 78, 1968 (1997). https://doi.org/PRLTAO
    D. McK. Paul et al. Phys. Rev. Lett. 80, 1517 (1998). https://doi.org/PRLTAO
    M. R. Eskildsen et al., Nature 393, 242 (1998).https://doi.org/NATUAS

  6. 6. A. Yatskar et al.Phys. Rev. B 54, R3772 (1996). https://doi.org/PRBMDO
    S. Kdharef et al.Solid State Commun. 98, 985 (1996). https://doi.org/SSCOA4
    S. L. Bud’ko, P. C. Canfield, A. Yatskar, W. P. Beyermann, Physica B 230‐32, 859 (1997).
    R. Sala, F. Borsa, E. Lee, P. C. Canfield, Phys. Rev. B 56, 6195 (1997).https://doi.org/PRBMDO

  7. 7. P. C. Canfield et al., Phys. Rev. B 55, 970 (1997). https://doi.org/PRBMDO
    P. C. Canfield, L. Bud’ko, Journal of Alloys and Compounds 262‐63, 169 (1997).
    P. C. Canfield, S. L. Bud’ko, B. K. Cho, Physica C 262, 249 (1996).https://doi.org/PHYCE6

  8. 8. C. Mazumdar et al., Solid State Commun. 87, 413 (1993).https://doi.org/SSCOA4

  9. 9. R. Nagarajan et al., Phys. Rev. Lett. 72, 274 (1994).https://doi.org/PRLTAO

  10. 10. L. F. Mattheiss, Phys. Rev. B 49, 13, 279 (1994). https://doi.org/PRBMDO
    W. E. Pickett, D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994). https://doi.org/PRLTAO
    J. Y. Rhee, X. Wang, B. N. Harmon, Phys. Rev. B 51, 15, 585 (1995).https://doi.org/PRBMDO

  11. 11. B. K. Cho, P. C. Canfield, D. C. Johnston, Phys. Rev. B 52, R3844 (1995). https://doi.org/PRBMDO
    C. V. Tomy et al., Phys. Rev. B 52, 9186 (1995).https://doi.org/PRBMDO

  12. 12. B. K. Cho, P. C. Canfield, D. C. Johnston, Phys. Rev. Lett. 77, 163 (1996).https://doi.org/PRLTAO

  13. 13. B. K. Chor et al., Phys. Rev. B 52, 3676 (1995). https://doi.org/PRBMDO
    B. K. Cho et al., Phys. Rev. B 52, 3684 (1995).https://doi.org/PRBMDO

  14. 14. T. V. Ramakrishnan, C. M. Varma, Phys. Rev. B 24, 137 (1981).https://doi.org/PRBMDO

  15. 15. Y. De Wilde et al., Phys. Rev. Lett. 78, 4273 (1997).https://doi.org/PRLTAO

  16. 16. K. O. Cheon et al., Phys. Rev. B 58, 6463 (1998).https://doi.org/PRBMDO

  17. 17. P. C. Canfield et al., J. Appl. Phys. 70, 5800 (1991). https://doi.org/JAPIAU
    Z. Fisk et al., Phys. Rev. Lett. 67, 3310 (1991).https://doi.org/PRLTAO

More about the Authors

Paul C. Canfield. Iowa State University, Ames, Iowa.

Peter L. Gammel. Bell Laboratories, Lucent Technologies, Murray Hill, New jersey.

David J. Bishop. Bell Laboratories, Lucent Technologies, Murray Hill, New jersey.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1998_10.jpeg

Volume 51, Number 10

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.