The question “How does it work?” is the motivation of many physicists. Condensed matter physics, chemical physics and nuclear physics can all be thought of as descriptions of the relation between structure and properties. The components of a biological system have functional properties that are particularly relevant to the operation of the system. Thus it is especially important in biology to understand the relation between structure and function. Such understanding can be sought at the level of the molecule, the cell, the organ, the organism or the social group.
This article is only available in PDF format
References
1. J. J. Hopfield, in Evolutionary Trends in the Physical Sciences, M. Suzuki, R. Kubo, eds., Springer‐Verlag, New York (1991), p. 295.
2. E. R. Kandel, J. H. Schwartz, Principles of Neural Science, 3rd ed., Appleton & Lange, Norwalk, Conn. (1991), p. 19.
3. D. Junge, Nerve and Muscle Excitation, Sinauer, Sunderland, Mass. (1981), p. 115, discusses some of the complications of the biophysics of this process.
4. J. Hertz, A. Krogh, R. G. Palmer, Introduction to the Theory of Neural Computation, Addison Wesley, Redwood City, Calif. (1991), p. 16.
6. See, for example, G. Dreyfus, in Applications of Neural Networks, H. G. Schuster, ed., VCH, New York (1992), p. 35.
7. While these equations are in common use, they have evolved somewhat, and do not have a sharp original reference. See, however, H. R. Wilson, J. D. Cowan, Biophys. J. 12, 1 (1972); https://doi.org/BIOJAU and W. Gerstner, J. L. van Hemmen, Network 3, 139 (1992).https://doi.org/NWRKEA
8. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982) J. J. Hopfield, 81, 3088 (1984).https://doi.org/PNASA6, Proc. Natl. Acad. Sci. U.S.A.
9. E. Domany, J. L. van Hemmen, K. Schulten, eds., Models of Neural Networks, Springer‐Verlag, New York (1991).
10. J. J. Hopfield, D. G. Tank, Biol. Cybern. 52, 141 (1985). https://doi.org/BICYAF Y. Takefuji, Neural Network Parallel Computing Kluwer Boston (1992).
11. W. J. Freeman, Sci. Am., February 1991, p. 78.
12. R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H. J. Reitboeck, Biol. Cybern. 60, 121 (1988).https://doi.org/BICYAF
13. C. M. Gray, W. Singer, Proc. Natl. Acad. Sci. USA 86, 1698 (1989).https://doi.org/PNASA6
14. Y. Kuramoto, Physica D 50, 15 (1991). https://doi.org/PDNPDT R. E. Mirollo, S. H. Strogatz, SIAM J. Appl. Math 50, 1645 (1990). L. F. Abbott, C. Vanvreeswijk, Phys. Rev. E 48, 1483 (1993).https://doi.org/PLEEE8
15. M. Tsodyks, I. Mitkov, H. Sompolinsky, Phys. Rev. Lett. 71, 1280 (1993).https://doi.org/PRLTAO
16. R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967).https://doi.org/BSSAAP
17. Z. Olami, H. J. S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).https://doi.org/PRLTAO
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
November 04, 2025 09:53 AM
This Content Appeared In
Volume 47, Number 2
Get PT in your inbox
Physics Today - The Week in Physics
The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.