The question “How does it work?” is the motivation of many physicists. Condensed matter physics, chemical physics and nuclear physics can all be thought of as descriptions of the relation between structure and properties. The components of a biological system have functional properties that are particularly relevant to the operation of the system. Thus it is especially important in biology to understand the relation between structure and function. Such understanding can be sought at the level of the molecule, the cell, the organ, the organism or the social group.
This article is only available in PDF format
References
1. J. J. Hopfield, in Evolutionary Trends in the Physical Sciences, M. Suzuki, R. Kubo, eds., Springer‐Verlag, New York (1991), p. 295.
2. E. R. Kandel, J. H. Schwartz, Principles of Neural Science, 3rd ed., Appleton & Lange, Norwalk, Conn. (1991), p. 19.
3. D. Junge, Nerve and Muscle Excitation, Sinauer, Sunderland, Mass. (1981), p. 115, discusses some of the complications of the biophysics of this process.
4. J. Hertz, A. Krogh, R. G. Palmer, Introduction to the Theory of Neural Computation, Addison Wesley, Redwood City, Calif. (1991), p. 16.
6. See, for example, G. Dreyfus, in Applications of Neural Networks, H. G. Schuster, ed., VCH, New York (1992), p. 35.
7. While these equations are in common use, they have evolved somewhat, and do not have a sharp original reference. See, however, H. R. Wilson, J. D. Cowan, Biophys. J. 12, 1 (1972); https://doi.org/BIOJAU and W. Gerstner, J. L. van Hemmen, Network 3, 139 (1992).https://doi.org/NWRKEA
8. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982) J. J. Hopfield, 81, 3088 (1984).https://doi.org/PNASA6, Proc. Natl. Acad. Sci. U.S.A.
9. E. Domany, J. L. van Hemmen, K. Schulten, eds., Models of Neural Networks, Springer‐Verlag, New York (1991).
10. J. J. Hopfield, D. G. Tank, Biol. Cybern. 52, 141 (1985). https://doi.org/BICYAF Y. Takefuji, Neural Network Parallel Computing Kluwer Boston (1992).
11. W. J. Freeman, Sci. Am., February 1991, p. 78.
12. R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H. J. Reitboeck, Biol. Cybern. 60, 121 (1988).https://doi.org/BICYAF
13. C. M. Gray, W. Singer, Proc. Natl. Acad. Sci. USA 86, 1698 (1989).https://doi.org/PNASA6
14. Y. Kuramoto, Physica D 50, 15 (1991). https://doi.org/PDNPDT R. E. Mirollo, S. H. Strogatz, SIAM J. Appl. Math 50, 1645 (1990). L. F. Abbott, C. Vanvreeswijk, Phys. Rev. E 48, 1483 (1993).https://doi.org/PLEEE8
15. M. Tsodyks, I. Mitkov, H. Sompolinsky, Phys. Rev. Lett. 71, 1280 (1993).https://doi.org/PRLTAO
16. R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967).https://doi.org/BSSAAP
17. Z. Olami, H. J. S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).https://doi.org/PRLTAO
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 47, Number 2
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.