Discover
/
Article

Negative Pressures and Cavitation in Liquid Helium

FEB 01, 2000
When subjected to intense sound waves, liquids can be stretched until they break and gas bubbles appear.
Humphrey Maris
Sebastien Balibar

Cavitation—the formation of bubbles—is a familiar phenomenon. Whenever a liquid is agitated violently, there is a possibility that cavitation will occur (see, for example, figure 1). In the case of boat propellers or hydraulic machines, cavitation is a problem that engineers try to avoid. In other contexts, however, cavitation can be useful—as, for example, in ultrasonic cleaning devices.

This article is only available in PDF format

More about the Authors

Humphrey Maris. Brown University, Providence, Rhode Island.

Sebastien Balibar. National Center for Scientific Research, Ecole Normale Supérieure, Paris, France.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_2000_02.jpeg

Volume 53, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.