Discover
/
Article

Muon spin relaxation

DEC 01, 1984
In an ingenious application of parity violation, physicists are measuring interstitial magnetic fields and diffusion in solids by analyzing the anisotropy in the decay of injected spin‐polarized positive muons.
Robert H. Heffner
Donald G. Fleming

Since its discovery in 1957, parity violation in the weak interaction has occupied both experimental and theoretical physicists in a broad effort directed toward its understanding. One manifestation of parity violation is found in the decay of spin‐polarized muons. In the earliest searches for suitable stopping materials for studying the weak interaction through the decay of positive muons, physicists noticed that the muon polarization remaining after thermalization depends markedly on the nature of the stopping environment, varying from about 10% in some liquids such as benzene to 100% in most metals. Data of this nature contained the beginnings of the technique of muon spin relaxation, also known as muon spin resonance or muon spin rotation. In this technique, which is akin to magnetic resonance, one monitors the spin polarization of muons to learn about the materials into which they have been injected. Muon spin relaxation now constitutes a significant research effort at the world’s meson‐producing accelerators: at Brookhaven and LAMPF in the United States, Dubna and Leningrad in the Soviet Union, CERN and SIN in Switzerland, TRIUMF in Canada, KEK in Japan and NIKHEF in the Netherlands.

This article is only available in PDF format

References

  1. 1. J. H. Brewer, K. M. Crowe in Muon Physics, Vol. III, V. Hughes, C. S. Wu, eds., Academic, New York (1975);
    J. H. Brewer, K. M. Crowe, Ann. Rev. Nucl. Sci. 28, 239 (1978);
    National Research Council, Muon Sources for Solid‐State Reseach, National Academy, Washington, D.C. (1984).

  2. 2. A. Schenck in Nuclear and Particle Physics at Intermediate Energies, J. B. Warren, ed., Plenum, New York (1976), p. 159;
    E. Klempt, R. Schulze, H. Wolf, M. Camani, F. N. Gygax, W. Rüegg, A. Schenck, H. Schilling, Phys. Rev. D 25, 652 (1982).https://doi.org/PRVDAQ

  3. 3. D. G. Fleming, R. J. Mikula, D. M. Garner, Phys. Rev. A 26, 2527 (1982); https://doi.org/PLRAAN
    D. G. Fleming, Proc. XII ICPEAC, North Holland, Amsterdam (1981), p. 297.

  4. 4. P. W. Percival, Radiochimica Acta 26, 1 (1979); https://doi.org/RAACAP
    D. C. Walker, Muon and Muonium Chemistry, Cambridge U.P. (1983).

  5. 5. A. Seeger in Hydrogen in Metals, G. Alefeld, J. Völkl, eds., Springer‐Verlag Berlin (1978), p. 349.

  6. 6. For general information consult proceedings of the three topical muon spin relaxation conferences: Hyperfine Interactions 6 (1979); https://doi.org/HYINDN
    Hyperfine Interactions 8 (1981); https://doi.org/HYINDN
    Hyperfine Interactions 17–19 (1984).https://doi.org/HYINDN

  7. 7. R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, R. Kubo, Phys. Rev. B 20, 850 (1979).https://doi.org/PRBMDO

  8. 8. A. B. Denison, H. Graf, W. Kündig, P. F. Meier, Helvetica Physica Acta 52, 460 (1979);
    S. Estreicher, P. F. Meier, Phys. Rev. B 25, 297 (1982).https://doi.org/PRBMDO

  9. 9. A. Schenck, Helvetica Physica Acta 54, 471 (1981); https://doi.org/HPACAK
    W. Studer, F. N. Gygax, A. Hintermann, W. Rüegg, A. Schenck, A. J. Van Der Wal, Hyperfine Interactions 17–19, 299 (1984).https://doi.org/HYINDN

  10. 10. K. W. Kehr, D. Richter, J.‐M. Welter, O. Hartmann, E. Karlsson, L. O. Norlin, T. O. Niinikowski, A. Yaouanc, Phys. Rev. B 26, 567 (1982); https://doi.org/PRBMDO
    J.‐M. Welter, D. Richter, R. Hempelmann, O. Hartmann, E. Karlsson, L. O. Norlin, T. O. Niinikowski, D. Lenz, Z. Phys. B 52, 303 (1983).

  11. 11. M. Camani, F. N. Gygax, W. Rüegg, A. Schenck, H. Schilling, Phys. Rev. Lett. 39, 836 (1977); https://doi.org/PRLTAO
    O. Hartmann, Phys. Rev. Lett. 39, 832 (1977).https://doi.org/PRLTAO

  12. 12. C. W. Clawson, K. M. Crowe, S. S. Rosenblum, S. E. Kohn, C. Y. Huang, J. L. Smith, J. H. Brewer, Phys. Rev. Lett. 51, 114 (1983).https://doi.org/PRLTAO

  13. 13. R. Kadono, J. Imazato, K. Nishiyama, K. Nagamine, T. Yamazaki, D. Richter, J. M. Welter, Yamada Conf. Muon Spin Rotation, Hyperfine Interactions 17–19, 109 (1984).https://doi.org/HYINDN

  14. 14. P. W. Anderson, Phys. Rev. 109, 1492 (1958).https://doi.org/PHRVAO

  15. 15. J. Kondo, Proceedings of the 17th Conference on Low Temperature Physics, Karlsruhe, Germany, August 1984.

  16. 16. For a recent review of spin‐glass theories see K. H. Fischer, Phys. Status Solidi B 116, 357 (1983). https://doi.org/PSSBBD
    For general reviews of spin‐glass experiments, see J. A. Mydosh in Disordered Systems and Localization, J. Ehlers, ed., Springer‐Verlag, Berlin (1981) p. 87.

  17. 17. Y. J. Uemura, T. Yamazaki, R. S. Hayano, R. Nakai, C. Y. Huang, Phys. Rev. Let. 45, 583 (1980); https://doi.org/PRLTAO
    Y. J. Uemura, T. Yamazaki, J. Magn. Magn. Mat. 31–34, 1359 (1983); https://doi.org/JMMMDC
    Y. J. Uemura, T. Yamazaki, D. R. Harshman, M. Senba, J. H. Brewer, E. Ansaldo, R. Keitel, Hyperfine Interactions 17–19, 453 (1984); https://doi.org/HYINDN
    Y. J. Uemura, Hyperfine Interactions 17–19, 447 (1984).https://doi.org/HYINDN

  18. 18. R. H. Heffner, M. Leon, M. E. Schillaci, D. E. MacLaughlin, S. A. Dodds, J. Appl. Phys. 53, 2174 (1982); https://doi.org/JAPIAU
    D. E. MacLaughlin, L. C. Gupta, D. W. Cooke, R. H. Heffner, M. Leon, M. E. Schillaci, Phys. Rev. Lett. 51, 927 (1983); https://doi.org/PRLTAO
    R. H. Heffner, D. E. MacLaughlin, Phys. Rev. B 29, 6048 (1984).https://doi.org/PRBMDO

  19. 19. H. Sompolinsky, A. Zippelius, Phys. Rev. Lett. 47, 359 (1981), https://doi.org/PRLTAO
    H. Sompolinsky, A. Zippelius, Phys. Rev. B 25, 6860 (1982); https://doi.org/PRBMDO
    H. Sompolinsky, A. Zippelius, J. Phys. C40, L1059 (1982).

  20. 20. J. H. Brewer, K. M. Crowe, F. N. Gygax, R. F. Johnson, B. D. Patterson, D. G. Fleming, A. Schenck, Phys. Rev. Lett. 31, 143 (1973).https://doi.org/PRLTAO

  21. 21. E. Holzschuh, W. Kündig, B. D. Patterson, Helv. Phys. Acta 54, 552 (1982).https://doi.org/HPACAK

  22. 22. J. H. Brewer, D. G. Fleming, D. P. Spencer in Nuclear and Electrical Resonance Spectroscopies Applied to Materials Science, E. N. Kaufmann, G. K. Shenoy, eds. Elsevier North Holland, New York (1981) p. 487;
    P. W. Percival, J. C. Brodovitch, K. E. Newman, D. P. Spencer, Chem. Phys. Lett. 93, 366 (1982); https://doi.org/CHPLBC
    D. P. Spencer, D. G. Fleming, J. H. Brewer, Hyperfine Interactions 17–19, 567 (1984).https://doi.org/HYINDN

  23. 23. B. D. Patterson, Hyperfine Interactions 17–19, 517 (1984); https://doi.org/HYINDN
    E. Holzschuh, W. Kündig, P. F. Meier, B. D. Patterson, J. P. F. Sellschop, M. C. Stemmet, H. Appel, Phys. Rev. A 25, 1272 (1982); https://doi.org/PLRAAN
    E. Holzschuh, H. Graf, E. Recknagel, S. Weidinger, Th. Wickert, P. F. Meier, Phys. Rev. B 20, 4391 (1979).https://doi.org/PRBMDO

  24. 24. B. D. Patterson, A. Bosshard, U. Straumann, P. Truöl, A. Wüest, Th. Wichert, Phys. Rev. Lett. 52, 938 (1984); https://doi.org/PRLTAO
    K. Maier, Hyperfine Interactions 17–19, 3 (1984).https://doi.org/HYINDN

More about the Authors

Robert H. Heffner. Los Alamos Meson Physics Facility, Los Alamos National Laboratory, New Mexico.

Donald G. Fleming. University of British Columbia, Vancouver.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_12.jpeg

Volume 37, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.