Discover
/
Article

Magnetic information technology

DEC 01, 1984
Devices that can store tens of billions of characters of information in a few cubic feet, access blocks of that information in milliseconds and transfer it at the rate of tens of millions of characters per second are within our reach.
Mark H. Kryder
Alfred B. Bortz

Important advances in robotics, communications and information processing are awaiting the development of faster and more compact devices that store and handle information. Magnetic information technology could provide such devices in the near future, but to do so will require basic research on topics ranging from magnetic phenomena to unusual mechanical systems.

This article is only available in PDF format

References

  1. 1. A. B. Bortz, S. B. Dunkle, Report of the Workshop on Magnetic Information Technology, Office of Interdisciplinary Research, Directorate for Engineering, National Science Foundation, Washington, D.C. (1983).

  2. 2. W. F. Druyvestyn, E. L. M. Raemaekers, R. D. J. Verhaar, J. deWilde, J. H. J. Fluitman, J. P. J. Groenland, J. Appl. Phys. 52, 2462 (1981).https://doi.org/JAPIAU

  3. 3. S. Yoshii, O. Ishii, S. Hattori, T. Nakagawa, G. Ishida, J. Appl. Phys. 53, 2556 (1982).https://doi.org/JAPIAU

  4. 4. A. Tasaki, N. Saegusa, M. Oda, IEEE Trans. Magnet. MAG‐19, 1731 (1983).https://doi.org/IEMGAQ

  5. 5. E. Kita, K. Tagawa, M. Kamikubota, A. Tasaki, IEEE Trans. Magnet. MAG‐17, 3193 (1981).https://doi.org/IEMGAQ

  6. 6. Y. Suganuma, H. Tanaka, M. Yanagisawa, F. Goto, S. Hatano, IEEE Trans. Magnet. MAG‐18, 1215 (1982).https://doi.org/IEMGAQ

  7. 7. J. U. Lemke, J. Appl. Phys. 53, 2561 (1982).https://doi.org/JAPIAU

  8. 8. S. Iwasaki, IEEE Trans. Magnet. MAG‐20, 657 (1984).https://doi.org/IEMGAQ

  9. 9. O. Kubo, T. Ido, H. Yokoyama, IEEE Trans. Magnet. MAG‐18, 1122 (1982).https://doi.org/IEMGAQ

  10. 10. Y. Togami, IEEE Trans. Magnet. MAG‐18, 1233 (1982).https://doi.org/IEMGAQ

  11. 11. M. H. Kryder, D. E. Thomas, Proceedings of IEEE International Conference on Computer Design: VLSI in Computers, IEEE Computer Society Press, Silver Spring, Maryland (1983).

  12. 12. S. Konishi, IEEE Trans. Magnet. MAG‐19, 1838 (1983).https://doi.org/IEMGAQ

  13. 13. J. C. Mallinson, IEEE Trans. Magnet. MAG‐10, 368 (1974).https://doi.org/IEMGAQ

  14. 14. Y. Hosoe, K. Andoh, N. Ohta, Y. Sugita, J. Appl. Phys. 55, 2542 (1984).https://doi.org/JAPIAU

  15. 15. S. Herd, P. Chaudhari, Phys. Stat. Sol. (a) 18, 603 (1973).

More about the Authors

Mark H. Kryder. Carnegie‐Mellon University, Pittsburgh, Pennsylvania.

Alfred B. Bortz. Magnetics Technology Center.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_12.jpeg

Volume 37, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.