Laser Linewidth
DOI: 10.1063/1.880973
One of the most important properties of laser light is its spectral purity and coherence. This unique quality has been important for the study of many new physical phenomena using laser sources that operate from the vacuum ultraviolet to the far infrared. An understanding of the mechanisms responsible for the broadening of the linewidth is necessary for the development of laser sources with sufficient spectral purity for various applications.
References
1. See for example: R. W. P. Drever et al., in Proc. Int. Conf. Laser Spectroscopy, A. R. W. McKellar, T. Oka, B. P. Stoicheff, eds., Springer‐Verlag, New York (1981), p. 25.
2. M. Lax, Phys. Rev. 160, 290 (1967).https://doi.org/PHRVAO
3. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).https://doi.org/PHRVAO
4. R. D. Hempstead, M. Lax, Phys. Rev. 161, 350 (1967).https://doi.org/PHRVAO
5. H. Richen, H. Vollmer, Z. Physik 191, 301 (1967).https://doi.org/ZEPYAA
6. H. Gerhardt, H. Welling, A. Guttner, Z. Physik 253, 301 (1972).https://doi.org/ZEPYAA
7. J. Hall, private communication.
8. E. D. Hinkley, C. Freed, Phys. Rev. Lett. 23, 277 (1969).https://doi.org/PRLTAO
9. M. W. Fleming, A. Mooradian, Appl. Phys. Lett. 38, 511 (1981).https://doi.org/APPLAB
10. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).https://doi.org/IEJQA7
11. D. Welford, A. Mooradian, Appl. Phys. Lett. 40, 865 (1982).https://doi.org/APPLAB
12. J. Harrison, A. Mooradian, Appl. Phys. Lett. 45, 318 (1984).https://doi.org/APPLAB
13. B. Daino, P. Spano, M. Tamburrini, S. Piazzola, IEEE J. Quantum Electron. QE‐19, 266 (1983).https://doi.org/IEJQA7
14. K. Vahala, C. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).https://doi.org/APPLAB
15. C. H. Henry, IEEE J. Quantum Electron. QE‐19, 1391 (1983).https://doi.org/IEJQA7
16. E. Eichen, P. Melman, paper K‐2, 9th IEEE International Conference on Semiconductor Lasers, Rio de Janeiro (1984).
17. D. Welford, A. Mooradian, Appl. Phys. Lett. 40, 560 (1982).https://doi.org/APPLAB
18. Y. Yamamoto, S. Saito, T. Mukai, IEEE J. Quantum Electron. QE‐19, 47 (1983). https://doi.org/IEJQA7
Y. Yamamoto, IEEE J. Quantum Electron. QE‐19, 34 (1983). https://doi.org/IEJQA7
A. Dandridge, H. F. Taylor, IEEE J. Quantum Electron. QE‐18, 1738 (1982).https://doi.org/IEJQA719. M. J. O’Mahony, I. D. Henning, Electron. Lett. 19, 1000 (1983); https://doi.org/ELLEAK
K. Kikuchi, T. Okoshi, Electron. Lett. 19, 812 (1983); https://doi.org/ELLEAK
G. Tenchio, Electron. Lett. 12, 562 (1976); https://doi.org/ELLEAK
G. Tenchio, Electron. Lett. 13, 614 (1977); https://doi.org/ELLEAK
M. Omtso, S. Kotajima, Jpn. J. Appl. Phys. 23, 760 (1984); https://doi.org/JJPYA5
K. Kikuchi, T. Okoshi, R. Arata, Electron. Lett. 20, 535 (1984); https://doi.org/ELLEAK
R. Schimpe, W. Harth, Electron. Lett. 19, 136 (1983).https://doi.org/ELLEAK20. H. J. Zeigler, private communication.
21. K. Vahala, A. Yariv, Appl. Phys. Lett. 43, 140 (1983); https://doi.org/APPLAB
R. Lang, K. Vahala, A. Yariv, to be published in IEEE J. Quantum Electron.22. R. DeVoe, R. G. Brewer, Phys. Rev. A 30, 2827 (1984).https://doi.org/PLRAAN
23. M. Arditi, Metrologia 18, 59 (1982).https://doi.org/MTRGAU
More about the Authors
Aram Mooradian. Massachusetts Institute of Technology, Lincoln Laboratory.