How Nature Harvests Sunlight
DOI: 10.1063/1.881879
It is through photosynthesis that Earth’s biosphere derives its energy from sunlight. Photosynthetic organisms—plants, algae and photosynthetic bacteria—have developed efficient systems to harvest the light of the Sun and to use its energy to drive their metabolic reactions, such as the reduction of carbon dioxide to sugar. The ubiquitous green color of plants is testimony to the key molecular participant in the light harvesting of plants, chlorophyll. More hidden in this respect, but no less widespread, is a second participating molecule, carotenoid. In green leaves, the color of the carotenoids is masked by the much more abundant chlorophylls, whereas in ripe tomatoes or the petals of yellow flowers, the carotenoids predominate. Chlorophyll molecules exist in slightly different chemical structures in various photosynthetic organisms, as chlorophyll a or b in plants or algae, and as bacteriochlorophyll a or b in photosynthetic bacteria. Molecules such as chlorophyll and carotenoid that absorb light and impart color to living matter and other materials are called pigments.
This article is only available in PDF format
References
1. H. Scheer, ed., Chlorophylls, CRC Press, Boca Raton, Fla. (1991).
2. R. Emerson, W. Arnold, J. Gen. Physiol. 16, 191 (1932).https://doi.org/JGPLAD
3. J. Deisenhofer, O. Epp, K. Mild, R. Huber, H. Michel, Nature 318, 618 (1985).https://doi.org/NATUAS
4. L. N. M. Duysens, “Transfer of Excitation Energy in Photosynthesis,” PhD thesis, Univ. Utrecht (1952).
5. R. E. Blankenship, M. T. Madigan, C. E. Bauer, eds., Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht, Germany (1995).
6. G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite‐Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 374, 517 (1995).https://doi.org/NATUAS
7. J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 4, 581 (1996).
8. X. Hu, T. Ritz, A. Damjanovic, K. Schulten, J. Phys. Chem. B 101, 3854 (1997).https://doi.org/JPCBFK
9. J. R. Oppenheimer, Phys. Rev. 60, 158 (1941).https://doi.org/PHRVAO
10. W. Arnold, J. R. Oppenheimer, J. Gen. Physiol. 33, 423 (1950).https://doi.org/JGPLAD
11. T. Förster, Ann. Phys. (Leipzig) 2, 55 (1948).https://doi.org/ANPYA2
12. P. Tavan, K. Schulten, Phys. Rev. B 36, 4337 (1987).https://doi.org/PRBMDO
13. S. Karrasch, P. A. Bullough, R. Ghosh, Eur. Mol. Biol. J. 14, 63, (1995).
14. M. Z. Papiz, S. M. Prince, A. M. Hawthornthwaite‐Lawless, G. McDermott, A. A. Freer, N. W. Isaacs, R. J. Cogdell, Trends in Plant Science 1, 198 (1996).
15. T. Pullerits, V. Sundstrom, Acc. Chem. Res. 29, 381 (1996).
16. R. vanGrondelle, J. Dekker, T. Gillbro, V. Sundstrom, Biochim. Biophys. Acta. 1187, 1, (1994).
17. R. S. Knox, Theory of Excitons, Academic Press, New York (1963).
18. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).https://doi.org/JCPSA6
More about the Authors
Xiche Hu. University of Illinois, Urbana‐Champaign.
Klaus Schulten. University of Illinois, Urbana‐Champaign.