Discover
/
Article

High‐Tc Thin Film and Electronic Devices

JUN 01, 1991
Only five years after the discovery of high‐temperature superconductors, researchers have succeeded in developing a variety of useful circuits and devices using thin films of these new materials.
Randy Simon

A worldwide effort to develop high‐temperature‐superconductor thin films and electronic devices began within weeks of the initial discovery in early 1987 of superconductivity above liquid‐nitrogen temperature. The ensuing period has seen remarkable progress, spurred by innovations in deposition technology, materials characterization and device design. Prospects for practical electronic applications of superconductivity have driven the development of high‐temperature‐superconductor thin‐film technology at an unprecedented pace. After five years researchers in the field have surmounted many of the initial hurdles in developing the new materials, and they are now working toward the first practical implementations of high‐temperature‐superconductor electronic technology.

This article is only available in PDF format

References

  1. 1. P. M. Mankiewich, J. H. Scofield, W. J. Skocpol, R. E. Howard, A. M. Dayem, E. Good, Appl. Phys. Lett. 51, 1753 (1987).https://doi.org/APPLAB

  2. 2. C. B. Eom, J. Z. Sun, K. Yamamoto, A. F. Marshall, K. E. Luther, Appl. Phys. Lett. 55, 6 (1989).https://doi.org/APPLAB

  3. 3. N. Newman, B. F. Cole, S. M. Garrison, K. Char, R. C. Taber, IEEE Trans. Magn. 27, 1276 (1991).https://doi.org/IEMGAQ

  4. 4. A. Inam, M. S. Hegde, X. D. Wu, T. Venkatesan, P. England, P. F. Miceli, E. W. Chase, C. C. Chang, J. M. Tarascon, J. B. Wachtman, Appl. Phys. Lett. 53, 908 (1988).https://doi.org/APPLAB

  5. 5. S. S. Laderman, R. C. Taber, R. D. Jacowitz, J. L. Moll, C. B. Eom, T. L. Hylton, A. F. Marshall, T. H. Geballe, M. R. Beasley, Phys. Rev. B (1991), in press.

  6. 6. D. K. Fork, D. B. Fenner, R. W. Barton, J. M. Phillips, G. A. N. Connell, J. B. Boyce, T. H. Geballe, Appl. Phys. Lett. 57, 1161 (1990).https://doi.org/APPLAB

  7. 7. K. Char, D. K. Fork, T. H. Geballe, R. C. Taber, R. D. Jacowitz, F. Bridges, G. A. N. Connell, J. B. Boyce, Appl. Phys. Lett. 56, 785 (1990).https://doi.org/APPLAB

  8. 8. R. L. Sandstrom, W. J. Gallagher, T. R. Diger, R. H. Koch, R. B. Laibowitz, A. W. Kleinsasser, R. J. Gambino, B. Bumble, M. F. Chisholm, Appl. Phys. Lett. 53, 444 (1988); https://doi.org/APPLAB
    C. B. Eom, A. F. Marshall, S. S. Laderman, R. D. Jacowitz, T. H. Geballe, Science 249, 1549 (1990).https://doi.org/SCIEAS

  9. 9. A. Inam, C. T. Rogers, R. Ramesh, K. Remschnig, L. Farrow, D. Hart, T. Venkatesan, B. Wilkens, Appl. Phys. Lett. 57, 2484 (1990).https://doi.org/APPLAB

  10. 10. Y. Yasu, et al., in Advances in Superconductivity, Springer‐Verlag, New York (1988), p. 599.

  11. 11. W. Y. Lee, V. Y. Lee, J. Salem, T. C. Haung, R. Savoy, D. C. Bullock, S. S. P. Parkin, Appl. Phys. Lett., 53, 329 (1988).

  12. 12. A. N. Pargellis, F. Sharifi, R. C. Dynes, B. Miller, E. S. Hellman, J. M. Rosamilia, E. H. HartfordJr, Appl. Phys. Lett. 58, 95 (1991).

  13. 13. J. C. Ritter, M. Nisenoff, G. Price, S. A. Wolf, IEEE Trans. Magn. 27, 2533 (1991).https://doi.org/IEMGAQ

  14. 14. M. S. Dilorio, S. Yoshizumi, K.‐Y. Yang, J. Zhang, M. Maung, submitted to Appl. Phys. Lett.

  15. 15. J. B. Barner, C. T. Rogers, A. Inam, R. Ramesh, S. Bersey, submitted to Appl. Phys. Lett.; D. Chin, T. Van Duzer, submitted to Appl. Phys. Lett.

  16. 16. R. Laibowitz, H. Koch, A. Gupta, G. Koren, W. J. Gallagher, V. Foglietti, B. Oh, J. M. Viggiano, Appl. Phys. Lett. 56, 686 (1990).https://doi.org/APPLAB

  17. 17. J. Gao, W. A. M. Aarnink, G. J. Gerritsma, D. Veldhuis, H. Rogalla, IEEE Trans. Magn. 27, 3062 (1991).https://doi.org/IEMGAQ

  18. 18. R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koren, Phys. Rev. Lett. 64, 228 (1990).https://doi.org/PRLTAO

  19. 19. R. Gross, P. Chaudhari, M. Kowasaki, M. B. Ketchen, A. Gupta, Appl. Phys. Lett. 57, 727 (1990).https://doi.org/APPLAB

  20. 20. D. H. Shin, J. Silcox, S. E. Russek, D. K. Lathrop, B. Moeckly, R. A. Buhrman, Appl. Phys. Lett. 57, 508 (1990).https://doi.org/APPLAB

  21. 21. K. P. Daly, W. D. Dozier, J. F. Burch, S. B. Coons, R. Hu, C. E. Platt, R. W. Simon, Appl. Phys. Lett. 58, 543 (1991).https://doi.org/APPLAB

  22. 22. K. Char, M. S. Colclough, S. M. Garrison, N. Newman, G. Zaharchuk, Appl. Phys. Lett., in press.

  23. 23. J. J. Kingston, F. C. Wellstood, P. Lerch, A. H. Miklich, J. Clarke, Appl. Phys. Lett. 56, 189 (1990).https://doi.org/APPLAB

  24. 24. J. S. Martens, D. S. Ginley, J. B. Beyer, J. E. Nordman, G. K. G. Hohenwarter, IEEE Trans. Magn., 27, 3284 (1991”

More about the authors

Randy Simon, Conductus Inc, Sunnyvale, California.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1991_06.jpeg

Volume 44, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.