High magnetic fields for physics
DOI: 10.1063/1.2916349
For many years magnetic fields have served as an essential tool of the experimental physicist. For example, in solid‐state physics our current understanding of the Fermi surfaces of metals, the band structures of semiconductors, the phases of magnets and the properties of superconductors is in each instance based on observations that involve magnetic fields. Yet, until 25 years ago, the highest dc field available to most scientists was that provided by iron‐cored electromagnets—about 3 T (30 kG) in air gaps of a few centimeters. In 1960 the Francis Bitter National Magnetic Laboratory was established to develop magnetic field facilities beyond 3 T and use them for solid‐state physics research. The Magnet Lab was the first center for research on high magnetic fields in the world and remains the focus for such work in the United States.
This article is only available in PDF format
References
1. D. B. Montgomery, Rept. Progr. Phys. 26, 69 (1963).
2. Guinness Book of World Records, N. D. McWhirter, ed., Bantam (1984), page 192. You could look it up.
3. M. J. Leupold, J. R. Hale, Y. Iwasa, L. G. Rubin, R. J. Weggel, IEEE Trans. Magn. MAG‐17, 1966 (1981).https://doi.org/IEMGAQ
4. M. Decroux, S. E. Lambert, M. S. Torikachvili, M. B. Maple, R. P. Guertin, L. D. Woolf, R. Baillif, Phys. Rev. Lett. 52, 1563 (1984).https://doi.org/PRLTAO
5. G. R. Stewart, B. Cort, G. W. Webb, Phys. Rev. B 24, 3841 (1981).https://doi.org/PRBMDO
6. J. W. Ekin, IEEE Trans. Magn. MAG‐19, 900 (1983).https://doi.org/IEMGAQ
7. C. L. H. Thieme, S. Pourrahimi, B. B. Schwartz, S. Foner, Appl. Phys. Lett. 44, 260 (1984).https://doi.org/APPLAB
8. S. Foner, E. J. McNiffJr, Solid State Commun. 39, 959 (1981).https://doi.org/SSCOA4
9. D. C. Tsui, H. L. Störmer, A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).https://doi.org/PRLTAO
10. H. L. Störmer, A. Chang, D. C. Tsui, J. C. M. Hwang, A. C. Gossard, W. Wiegmann, Phys. Rev. Lett. 50, 1953 (1983).https://doi.org/PRLTAO
11. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).https://doi.org/PRLTAO
12. Y. Iye, P. M. Tedrow, G. Timp, M. Shayegan, M. S. Dresselhaus, G. Dresselhaus, A. Furukawa, S. Tanuma, Phys. Rev. B 25, 5478 (1982); https://doi.org/PRBMDO
G. Timp, P. D. Dresselhaus, T. C. Chieu, G. Dresselhaus, Y. Iye, Phys. Rev. B 28, 7393 (1983).https://doi.org/PRBMDO13. L. L. Chang, N. J. Kawai, E. E. Mendez, C.‐A. Chang, L. Esaki, Appl. Phys. Lett. 38, 30 (1982).https://doi.org/APPLAB
14. D. A. Syphers, J. S. Brooks, P. J. Stiles, Solid State Commun. 46, 243 (1983).https://doi.org/SSCOA4
15. A. Hartstein, A. B. Fowler, K. C. Woo, Physica 117B & 118B, 688 (1983).
16. N. P. Ong, G. Kote, J. T. Cheung, Phys. Rev. B 28, 2289 (1983).https://doi.org/PRBMDO
17. R. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell, J. L. Vicent, Phys. Rev. B 27, 125 (1983).https://doi.org/PRBMDO
18. R. S. Markiewicz, C. J. Rollins, Phys. Rev. B 29, 735 (1984).https://doi.org/PRBMDO
19. H. Q. Le, B. Lax, P. A. Maki, S. C. Palmateer, L. F. Eastman, J. Appl. Phys. 55, 4367 (1984).https://doi.org/JAPIAU
20. R. L. Aggarwal, S. N. Jasperson, J. Stankiewicz, Y. Shapiro, S. Foner, B. Khazai, A. Wold, Phys. Rev. B 28, 6907 (1983).https://doi.org/PRBMDO
21. P. M. Chaikin, M.‐Y. Choi, J. F. Kwak, J. S. Brooks, K. P. Martin, M. J. Naughton, E. M. Engler, R. L. Greene, Phys. Rev. Lett. 51, 2333 (1983).https://doi.org/PRLTAO
22. H. H. Sample, B. L. Brandt, L. G. Rubin, Rev. Sci. Instrum. 53, 1129 (1982).https://doi.org/RSINAK
More about the Authors
Lawrence G. Rubin. Massachusetts Institute of Technology, Cambridge, Massachusetts.
Peter A. Wolff. Massachusetts Institute of Technology, Cambridge, Massachusetts.