Discover
/
Article

High magnetic fields for physics

AUG 01, 1984
In its first years the National Magnet Laboratory has become the preeminent center for advanced magnet technology and the “Mecca” of visiting experimentalists eager to use the Laboratory’s extensive high‐field facilities.
Peter A. Wolff

For many years magnetic fields have served as an essential tool of the experimental physicist. For example, in solid‐state physics our current understanding of the Fermi surfaces of metals, the band structures of semiconductors, the phases of magnets and the properties of superconductors is in each instance based on observations that involve magnetic fields. Yet, until 25 years ago, the highest dc field available to most scientists was that provided by iron‐cored electromagnets—about 3 T (30 kG) in air gaps of a few centimeters. In 1960 the Francis Bitter National Magnetic Laboratory was established to develop magnetic field facilities beyond 3 T and use them for solid‐state physics research. The Magnet Lab was the first center for research on high magnetic fields in the world and remains the focus for such work in the United States.

This article is only available in PDF format

References

  1. 1. D. B. Montgomery, Rept. Progr. Phys. 26, 69 (1963).

  2. 2. Guinness Book of World Records, N. D. McWhirter, ed., Bantam (1984), page 192. You could look it up.

  3. 3. M. J. Leupold, J. R. Hale, Y. Iwasa, L. G. Rubin, R. J. Weggel, IEEE Trans. Magn. MAG‐17, 1966 (1981).https://doi.org/IEMGAQ

  4. 4. M. Decroux, S. E. Lambert, M. S. Torikachvili, M. B. Maple, R. P. Guertin, L. D. Woolf, R. Baillif, Phys. Rev. Lett. 52, 1563 (1984).https://doi.org/PRLTAO

  5. 5. G. R. Stewart, B. Cort, G. W. Webb, Phys. Rev. B 24, 3841 (1981).https://doi.org/PRBMDO

  6. 6. J. W. Ekin, IEEE Trans. Magn. MAG‐19, 900 (1983).https://doi.org/IEMGAQ

  7. 7. C. L. H. Thieme, S. Pourrahimi, B. B. Schwartz, S. Foner, Appl. Phys. Lett. 44, 260 (1984).https://doi.org/APPLAB

  8. 8. S. Foner, E. J. McNiffJr, Solid State Commun. 39, 959 (1981).https://doi.org/SSCOA4

  9. 9. D. C. Tsui, H. L. Störmer, A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).https://doi.org/PRLTAO

  10. 10. H. L. Störmer, A. Chang, D. C. Tsui, J. C. M. Hwang, A. C. Gossard, W. Wiegmann, Phys. Rev. Lett. 50, 1953 (1983).https://doi.org/PRLTAO

  11. 11. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).https://doi.org/PRLTAO

  12. 12. Y. Iye, P. M. Tedrow, G. Timp, M. Shayegan, M. S. Dresselhaus, G. Dresselhaus, A. Furukawa, S. Tanuma, Phys. Rev. B 25, 5478 (1982); https://doi.org/PRBMDO
    G. Timp, P. D. Dresselhaus, T. C. Chieu, G. Dresselhaus, Y. Iye, Phys. Rev. B 28, 7393 (1983).https://doi.org/PRBMDO

  13. 13. L. L. Chang, N. J. Kawai, E. E. Mendez, C.‐A. Chang, L. Esaki, Appl. Phys. Lett. 38, 30 (1982).https://doi.org/APPLAB

  14. 14. D. A. Syphers, J. S. Brooks, P. J. Stiles, Solid State Commun. 46, 243 (1983).https://doi.org/SSCOA4

  15. 15. A. Hartstein, A. B. Fowler, K. C. Woo, Physica 117B & 118B, 688 (1983).

  16. 16. N. P. Ong, G. Kote, J. T. Cheung, Phys. Rev. B 28, 2289 (1983).https://doi.org/PRBMDO

  17. 17. R. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell, J. L. Vicent, Phys. Rev. B 27, 125 (1983).https://doi.org/PRBMDO

  18. 18. R. S. Markiewicz, C. J. Rollins, Phys. Rev. B 29, 735 (1984).https://doi.org/PRBMDO

  19. 19. H. Q. Le, B. Lax, P. A. Maki, S. C. Palmateer, L. F. Eastman, J. Appl. Phys. 55, 4367 (1984).https://doi.org/JAPIAU

  20. 20. R. L. Aggarwal, S. N. Jasperson, J. Stankiewicz, Y. Shapiro, S. Foner, B. Khazai, A. Wold, Phys. Rev. B 28, 6907 (1983).https://doi.org/PRBMDO

  21. 21. P. M. Chaikin, M.‐Y. Choi, J. F. Kwak, J. S. Brooks, K. P. Martin, M. J. Naughton, E. M. Engler, R. L. Greene, Phys. Rev. Lett. 51, 2333 (1983).https://doi.org/PRLTAO

  22. 22. H. H. Sample, B. L. Brandt, L. G. Rubin, Rev. Sci. Instrum. 53, 1129 (1982).https://doi.org/RSINAK

More about the Authors

Lawrence G. Rubin. Massachusetts Institute of Technology, Cambridge, Massachusetts.

Peter A. Wolff. Massachusetts Institute of Technology, Cambridge, Massachusetts.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_08.jpeg

Volume 37, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.