Graphite Intercalation Compounds
DOI: 10.1063/1.881095
Graphite intercalation compounds are synthetic metals formed by inserting layers of atoms or molecules of a guest chemical species between the layers of carbon atoms that make up graphite. Because carbon occupies a middle position in the order of electronegativity of the elements in the periodic table, graphite welcomes many chemicals as guests, or intercalants, making it possible to produce hundreds of metallic materials. (See figure 1.)
This article is only available in PDF format
References
1. H. Selig, D. Davidov, eds., Proc. Fourth Int. Symp. on GICs, to be published in Synth. Metals.
2. J. Bok, C. Rigaux, I. Rosenman, H. Kamimura, eds., Ann. Phys. (Paris) 11, suppl. no. 2 (Proc. Franco‐Japanese Colloq. on GICs) (1986).https://doi.org/ANPHAJ
3. K. Nakao, S. A. Solin, eds., Proc. Int. Symp. on GICs, Synth. Metals 12 (1985).https://doi.org/SYMEDZ
4. A. Herold, D. Gerard, eds., Proc. Third Int. Symp. on GICs, Synth. Metals 8 (1983).https://doi.org/SYMEDZ
5. F. L. Vogel, A. Hérold, eds., Proc. Second Int. Conf. on GICs, Synth. Metals 2 and 3 (1981).https://doi.org/SYMEDZ
6. L. Pietronero, E. Tosatti, eds., Int. Conf. on Physics of Intercalation Compounds (Springer Series in Solid‐State Science, vol. 38), Springer‐Verlag, Berlin (1981).
7. J. E. Fischer, T. E. Thompson, PHYSICS TODAY, July 1978, p. 36.
8. M. S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981).https://doi.org/ADPHAH
9. S. A. Solin, Adv. Chem. Phys. 49, 455 (1982).https://doi.org/ADCPAA
10. H. Zabel, P. C. Chow, Comments Condensed Matter Phys. 12, 225 (1986).https://doi.org/CCMPEB
11. S. Tanuma, H. Kamimura, eds., Graphite Intercalation Compounds: Progress of Research in Japan (Proc. of the Special Distinguished Research Project), World Scientific, Singapore (1985).
12. F. L. Vogel, A. Hérold, eds., Franco‐American Conf. on Intercalation Compounds of Graphite (Material Science and Engineering, vol. 31), Elsevier Sequoia, Lausanne (1977).
13. N. Daumas, A. Hérold, Bull. Soc. Chim. Fr. 5, 1598 (1971).https://doi.org/BSCFAS
14. G. Kirczenow, Phys. Rev. Lett. 52, 437 (1984).https://doi.org/PRLTAO
15. Y. Yamada, I. Naiki, J. Phys. Soc. Japan 51, 2174 (1982).https://doi.org/JUPSAU
16. H. Mitani, K. Niizeki, J. Phys. C 20, 1017 (1987).https://doi.org/JPSOAW
17. H. Kamimura, Ann. Phys. 11, 39 (1986); also see related references mentioned in this article.https://doi.org/ANPYA2
18. R. C. Tatar, S. Rabii, Extended Abstracts of the 1984 MRS Symp. on GICs, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus, eds., Materials Research Society, Pittsburgh (1984), p. 71.
19. S. Mizuno, H. Hiramoto, K. Nakao, Solid State Commun. 63, 705 (1987).https://doi.org/SSCOA4
20. A. Koma, K. Miki, H. Suematsu, T. Ohno, H. Kamimura, Phys. Rev. B 34, 2434 (1986).https://doi.org/PRBMDO
21. T. Takahashi, N. Gunasekara, T. Sagawa, H. Suematsu, J. Phys. Soc. Japan 55, 3498 (1986).https://doi.org/JUPSAU
22. R. Saito, M. Tsukada, K. Kobayashi, H. Kamimura, Phys. Rev. B 35, 2963 (1987).https://doi.org/PRBMDO
23. Y. Takada, J. Phys. Soc. Japan 51, 63 (1982).https://doi.org/JUPSAU
More about the Authors
Hiroshi Kamimura. University of Tokyo.