Exploring Mesoscopia: The Bold New World of Nanostructures
DOI: 10.1063/1.881365
Interest in the physics of condensed matter at size scales larger than that of atoms but smaller than that of bulk solids—so‐called mesoscopic physics—has grown rapidly over the past two decades, but it stems from much earlier beginnings in diverse disciplines. Indeed, nanostructured matter apparently had its genesis with the Big Bang. The structures of the earliest meteorites suggest that matter formed by the condensation of atoms into nanoscale clusters that then aggregated into larger masses under the action of gravity. Many examples of natural nanostructures can be found as well in biological systems from seashells to the human body.
This article is only available in PDF format
References
1. R. P. Feynman, Engineering and Science, February 1960, p. 22
2. R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962).https://doi.org/JUPSAU
3. Ph. Buffat, J.‐P. Borel, Phys. Rev. A 13, 2287 (1976).https://doi.org/PLRAAN
4. R S. Berry, J. Jellinek, G. Natanson, Phys. Rev. A 30, 919 (1984). https://doi.org/PLRAAN
M. Y. Han, R. L. Whetten, Phys. Rev. Lett. 61, 1190 (1988). https://doi.org/PRLTAO
A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science 256, 1425 (1992).https://doi.org/SCIEAS5. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970). https://doi.org/IBMJAE
L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke, J. Vac. Sci. Technol. 10, 11 (1973). https://doi.org/JVSTAL
R. Dingle, W. Wiegmann, C. H. Henry, Phys. Rev. Lett. 33, 827 (1974). https://doi.org/PRLTAO
L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, R. H. Victora, J. Mater. Res. 5, 1299 (1990).https://doi.org/JMREEE6. P. Yee, W. D. Knight, Phys. Rev. B 11, 3261 (1975). https://doi.org/PLRBAQ
J. Smith, J. G. Gay, Phys. Rev. B 12, 4238 (1975). https://doi.org/PLRBAQ
R. P. Messmer, S. K. Knudson, K. H. Johnson, J. B. Diamond, C. Y. Yang, Phys. Rev. B 13, 1396 (1976).https://doi.org/PLRBAQ7. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. GoddardIII, A. Kaldor, S. G. Louie, M. Moskovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, Y. Wang, J. Mater. Res. 4, 704 (1989). https://doi.org/JMREEE
B. H. Kear, L. E. Cross, J. E. Keem, R. W. Siegel, F. Spaepen, K. C. Taylor, E. L. Thomas, K.‐N. Tu, Research Opportunities for Materials with Ultrafine Microstructures, vol. NMAB‐454, Natl. Acad. P., Washington, D.C. (1989).
P. Jena, S. N. Khanna, B. K. Rao, eds., Physics and Chemistry of Finite Systems: From Clusters to Crystals, Kluwer, Dordrecht, The Netherlands (1992).8. H. Gleiter, in Deformation of Polycrystals: Mechanisms and Microstructures, N. Hansen, A. Horsewell, T. Leffers, H. Lilholt, eds., Riso/ Natl. Lab., Roskilde, Denmark (1981), p. 15.
R. Birringer, H. Gleiter, H.‐P. Klein, P. Marquardt, Phys. Lett. A 102, 365 (1984). https://doi.org/PYLAAG
R. Birringer, U. Herr, H. Gleiter, Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).9. R. W. Siegel, H. Hahn, in Current Trends in the Physics of Materials, M. Yussouff, ed., World Scientific, Singapore (1987), p. 403.
R. W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, R. Gronsky, J. Mater. Res. 3, 1367 (1988).https://doi.org/JMREEE10. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, J. Mater. Res. 8, 2054 (1993).https://doi.org/JMREEE
11. R. W. Siegel, Nanostructured Mater. 3, 1 (1993).
12. T. D. Klots, B. J. Winter, E. K. Parks, S. J. Riley, J. Chem. Phys. 92, 2110 (1990); https://doi.org/JCPSA6
T. D. Klots, B. J. Winter, E. K. Parks, S. J. Riley, 95, 8919 (1991).13. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, J. Am. Chem. Soc. 110, 3046 (1988).
M. L. Steigerwald, L. E. Brus, Annu. Rev. Mater. Sci. 19, 471 (1989). https://doi.org/ARMSCX
A. P. Alivisatos, T. D. Harris, P. J. Carrol, M. L. Steigerwald, L. E. Brus, J. Chem. Phys. 90, 3463 (1989).https://doi.org/JCPSA614. G. W. Nieman, J. R. Weertman, R. W. Siegel, Scripta Metall. 23, 2013 (1989);
G. W. Nieman, J. R. Weertman, R. W. Siegel, Scripta Metall. Mater. 24, 145 (1990);
G. W. Nieman, J. R. Weertman, R. W. Siegel, J. Mater. Res. 6, 1012 (1991).https://doi.org/JMREEE15. M. J. Mayo, R. W. Siegel, A. Narayanasamy, W. D. Nix, J. Mater. Res. 5, 1073 (1990). https://doi.org/JMREEE
M. J. Mayo, R. W. Siegel, Y. X. Liao, W. D. Nix, J. Mater. Res. 7, 973 (1992).https://doi.org/JMREEE16. M. N. Baibach, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).https://doi.org/PRLTAO
17. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, G. Thomas, Phys. Rev. Lett. 68, 3745 (1992). https://doi.org/PRLTAO
J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992). https://doi.org/PRLTAO
T. L. Hylton, K. R. Coffey, M. A. Parker, J. K. Howard, Science 261, 1021 (1993).https://doi.org/SCIEAS
More about the authors
Richard W. Siegel, Argonne National Laboratory, Argonne, Illinois.