Discover
/
Article

Diffusion‐Limited Aggregation: A Model for Pattern Formation

NOV 01, 2000
Recent insights from this well‐studied model have led to many new applications—from river networks to oil recovery, and from electrodeposition to string theory.
Thomas C. Halsey

Nature confronts us at every turn with patterns—whether the stately spiral shapes of galaxies and hurricanes or the beautiful symmetries of snowflakes and silicon. A host of processes can play a role in forming natural patterns, though they usually involve an interaction between the transport and the thermodynamic properties of the matter and radiation involved.

This article is only available in PDF format

More about the authors

Thomas C. Halsey, ExxonMobil Research and Engineering Co, Annandale, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_2000_11.jpeg

Volume 53, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.