Discover
/
Article

Decoherence and the Transition from Quantum to Classical

OCT 01, 1991
The environment surrounding a quantum system can, in effect, monitor some of the system’s observobles. As a result, the eigenstates of those observables continuously decohere and can behave like classical states.

DOI: 10.1063/1.881293

Wojciech H. Zurek

Quantum mechanics works exceedingly well in all practical applications. No example of conflict between its predictions and experiment is known. Without quantum physics we could not explain the behavior of solids, the structure and function of DNA, the color of the stars, the action of lasers or the properties of superfluids. Yet well over half a century after its inception, the debate about the relation of quantum mechanics to the familiar physical world continues. How can a theory that can account ith precision for everything we can measure still be deemed lacking?

This article is only available in PDF format

References

  1. 1. N. Bohr, Nature 121, 580 (1928); reprinted in ref. 2.https://doi.org/NATUAS

  2. 2. J. A. Wheeler, W. H. Zurek, eds., Quantum Theory and Measurements, Princeton U.P., Princeton, N.J. (1983).

  3. 3. V. B. Braginsky, Y. I. Vorontsov, K. S. Thome, Science 209, 547 (1980); https://doi.org/SCIEAS
    reprinted in ref. 2.C. M. Caves, K. S. Thorne, R. W. P. Drewer, V. D. Sandberg, M. Zimmerman, Rev. Mod. Phys. 52, 341 (1980).https://doi.org/RMPHAT

  4. 4. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987). https://doi.org/RMPHAT
    A. O. Caldeira, A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983). https://doi.org/APNYA6
    C. D. Tesche, Ann. N. Y. Acad. Sci. 480, 36 (1986).https://doi.org/ANYAA9

  5. 5. H. EverettIII, Rev. Mod. Phys. 29, 454 (1957). https://doi.org/RMPHAT
    J. A. Wheeler, Rev. Mod. Phys. 29, 463 (1957).https://doi.org/RMPHAT

  6. 6. B. S. DeWitt, N. Graham, eds., The Many‐Worlds Interpretation of Quantum Mechanics, Princeton U.P., Princeton, N.J. (1973).

  7. 7. H. D. Zeh, Found. Phys. 1, 69 (1970); reprinted in ref. 2.https://doi.org/FNDPA4

  8. 8. W. H. Zurek, Phys. Rev. D 24, 1516 (1981); https://doi.org/PRVDAQ
    W. H. Zurek, 26, 1862 (1982).

  9. 9. E. P. Wigner, in Quantum Optics, Experimental Gravitation, and the Measurement Theory, P. Meystre, M. O. Scully, eds., Plenum, New York (1983), p. 43.
    E. Joos, H. D. Zeh, Z. Phys. B 59, 223 (1985). https://doi.org/ZPCMDN
    F. Haake, D. F. Walls, in Quantum Optics IV, J. D. Harvey, D. F. Walls, eds., Springer‐Verlag, New York (1986), p. 181.
    G. J. Milburn, C. A. Holmes, Phys. Rev. Lett. 56, 2237 (1986). https://doi.org/PRLTAO
    A. Albrecht, “Investigating Decoherence in a Simple System,” Fermilab preprint 91/101‐A (1991).
    B. L. Hu, J. P. Paz, Y. Zhang, “Quantum Brownian Motion in a General Environment,” U. Maryland preprint (1991).

  10. 10. M. Gell‐Mann, J. B. Hartle, in Complexity, Entropy, and the Physics of Information, W. H. Zurek, ed., Addison‐Wesley, Redwood City, Calif. (1990), p. 425.
    J. B. Hartle, in Quantum Cosmology and Baby Universes, S. Coleman, J. B. Hartle, T. Piran, S. Weinberg, eds., World Scientific, Singapore (1991), p. 425.

  11. 11. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer‐Verlag, Berlin (1932),
    English trans, by R. T. Beyer, Mathematical Foundations of Quantum Mechanics, Princeton U.P., Princeton, N.J. (1955);
    partly reprinted in ref. 2.

  12. 12. E. P. Wigner, Am. J. Phys. 31, 6 (1963),
    contains the original design of the reversible Stern‐Gerlach apparatus. See M. O. Scully, B. G. Englert, J. Schwinger, Phys. Rev. A 40, 1775 (1989), and references therein for recent discussion of the “one‐bit detector.”https://doi.org/AJPIAS

  13. 13. J. A. Wheeler, in Problems in Foundations of Physics, Proc. Int. Sch. Phys. “Enrico Fermi,” Course 72, N. Toraldo di Francia, ed., North Holland, Amsterdam (1979), p. 395.

  14. 14. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/PHRVAO
    D. Bohm, Quantum Theory, Prentice‐Hall, Englewood Cliffs, N.J. (1951), ch. 22, sections 15–19; reprinted in ref. 2.

  15. 15. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 91 (1982). https://doi.org/PRLTAO
    A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982).https://doi.org/PRLTAO

  16. 16. J. S. Bell, Physics 1, 195 (1964).

  17. 17. R. P. Feynman, F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).https://doi.org/APNYA6

  18. 18. H. Dekker, Phys. Rep. 80, 1 (1981).https://doi.org/PRPLCM

  19. 19. A. O. Caldeira, A. J. Leggett, Physica A 121, 587 (1983); https://doi.org/PHYADX
    A. O. Caldeira, A. J. Leggett, Phys. Rev. A 31, 1057 (1985).https://doi.org/PLRAAN

  20. 20. W. H. Zurek, in Frontiers of Nonequilibrium Statistical Physics, P. Meystre, M. O. Scully, eds., Plenum, New York (1986), p. 145.
    W. G. Unruh, W. H. Zurek, Phys. Rev. D 40, 1071 (1989).https://doi.org/PRVDAQ

  21. 21. J. J. Halliwell, Phys. Rev. D 39, 2912 (1989). https://doi.org/PRVDAQ
    S. Habib, R. Laflamme, Phys. Rev. D 42, 4056 (1990).https://doi.org/PRVDAQ

  22. 22. R. J. Griffiths, Stat. Phys. 36, 219 (1984).

  23. 23. R. Omnés, Ann. Phys. (N.Y.) 201, 354, (1990).

  24. 24. E. P. Wigner, in The Scientist Speculates, I. J. Good, ed., Heineman, London (1961), p. 284; reprinted in ref. 2.

More about the Authors

Wojciech H. Zurek. Los Alamos National Laboratory, Los Alamos.

In These Collections
Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1991_10.jpeg

Volume 44, Number 10

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.