Discover
/
Article

Confocal Scanning Optical Microscopy

SEP 01, 1989
In microscopes based on this principle a defocused image disappears instead of blurring, allowing the user to independently image different layers of transparent materials.
Gordon S. Kino
Timothy R. Corle

Virtually everyone has used an optical microscope, if only to dissect a frog in school or to observe the life forms in a drop of pond water. The optical microscope is a powerful research tool in many areas of science, such as biology, geology, medicine and, more recently, semiconductor metrology. As the need to visualize submicron structures has become more pressing, several new types of microscopes have been developed—for example, the confocal scanning optical microscope, the scanning acoustic, the scanning electron and the scanning tunneling microscopes.

This article is only available in PDF format

References

  1. 1. J. Z. Young, F. Roberts, Nature 167, 231 (1951).https://doi.org/NATUAS

  2. 2. M. Minsky, US patent 3 013 346, 19 December 1961.

  3. 3. P. Davidovits, M. D. Egger, Nature 233, 831 (1969).https://doi.org/NATUAS

  4. 4. R. Lemons, C. F. Quate, in Proc. IEEE Ultrasonics Symp. (IEEE catalog no. 73CHO807‐8SU), J. deKlerk, B. R. McAvoy, eds., IEEE, New York (1973), p. 18.

  5. 5. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, Academic, New York (1984).

  6. 6. M. Petran, M. Hadravsky, A. Boyle, Scanning 7, 97 (1985).https://doi.org/SCNNDF

  7. 7. G. Q. Xiao, T. R. Corle, G. S. Kino, Appl. Phys. Lett. 53, 716 (1988).https://doi.org/APPLAB

  8. 8. C. F. Quate, PHYSICS TODAY, August 1985, p. 34.

  9. 9. M. T. Postek, K. S. Howard, A. H. Johnson, K. L. McMichael, Scanning Electron Microscopy: A Student’s Handbook, Ladd Research Industries (1980).

  10. 10. P. K. Hansma, J. Tersoff, J. Appl. Phys. 61, R1 (1987).https://doi.org/JAPIAU

  11. 11. P. K. Hansma, V. B. Elings, O. Marti, C. E. Bracker, Science 242, 209 (1988).https://doi.org/SCIEAS

  12. 12. C. C. Williams, H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).https://doi.org/APPLAB

  13. 13. E. A. Ash, G. Nicholls, Nature 237, 510 (1972). https://doi.org/NATUAS
    D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984). https://doi.org/APPLAB
    E. Betzig, A. Harootynian, A. Lewis, M. Issacson, Appl. Opt. 25, 1890 (1986).https://doi.org/APOPAI

  14. 14. T. R. Corle, C. H. Chou, G. S. Kino, Opt. Lett. 11, 770 (1986).https://doi.org/OPLEDP

More about the Authors

Gordon S. Kino. Stanford University.

Timothy R. Corle. Edwared L. Ginzton Laboratory, Stanford University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1989_09.jpeg

Volume 42, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.