Discover
/
Article

Bad luck in attempts to make scientific discoveries

JAN 01, 1967
People who get prizes are usually expected to tell the assembled dinner guests about the research that won them recognition. The recipient of the Fifth Fritz London Award chose instead to describe how he had just missed making a number of very important discoveries.
C. J. Gorter
Henry A. Boorse

WHEN THE Committee for the Fifth Fritz London Award asked me to give my recipient’s address a somewhat personal nature, I hesitated about how to combine the modest review that I could give of certain recent advances made in the Kamerlingh Onnes Laboratory with this request. Not finding a satisfactory solution, I remembered that from time to time I am asked why I have just missed making certain discoveries. Since I have received a favorable reaction from the committee chairman, Dean Boorse, to my enquiry about whether it would be admissible to drop all discussion of recent work and to speak only on apparent bad luck in my attempts to make certain scientific discoveries, I shall do so in the hope of satisfying once and for all those who have asked or would like to ask me about these matters. I shall talk mainly on attempts to observe nuclear and electron magnetic resonances, gamma anisotropy after orienting atomic nuclei, anisotropy of beta emission, and flux quantization in superconductors.

This article is only available in PDF format

References

  1. 1. C. J. Gorter, Paramagnetische Eigenschaften von Salzen, thesis, Leiden, 1932.

  2. 2. W. Lenz, Phys. Z. 21, 613 (1920); https://doi.org/PHZTAO
    P. Ehrenfest, Leiden Comm. Suppl. 44b (1929).

  3. 3. G. Breit and H. Kamerlingh Onnes, Leiden Comm. 168b (1926).

  4. 4. C. J. Gorter, Physica 3, 503 (1936).https://doi.org/PHYSAG

  5. 5. C. J. Gorter, Leiden Comm. 241e, Physica 1, 199 (1934); https://doi.org/PHYSAG
    C. J. Gorter, and H. B. G. Gasimir, Physica 1, 305 (1934); https://doi.org/PHYSAG
    C. J. Gorter, and H. B. G. Gasimir, Phys. Z. 35, 963 (1934).https://doi.org/PHZTAO

  6. 6. A. D. Kokker and C. J. Gorter, Z. Phys. 77, 166 (1932).https://doi.org/ZEPYAA

  7. 7. E. C. Wiersma and C. J. Gorter, Leiden Comm. Suppl. 73c;
    Physica 12, 316 (1932).

  8. 8. L. Nordheim and C. J. Gorter, Physica 2, 383 (1935).https://doi.org/PHYSAG

  9. 9. C. J. Gorter and F. Brons, Physica 4, 579 (1937).https://doi.org/PHYSAG

  10. 10. I. Waller, Z. Phys. 79, 370 (1932).https://doi.org/ZEPYAA

  11. 11. C. J. Gorter and R. Kronig, Physica 3, 1009 (1936); https://doi.org/PHYSAG
    R. Kronig, Physica 5, 521 (1938) https://doi.org/PHYSAG
    and R. Kronig, 6, 33 (1939); https://doi.org/PHYSAG , Physica (Amsterdam)
    R. Kronig and C. J. Bouwkamp, Physica 6, 290 (1939).https://doi.org/PHYSAG

  12. 12. C. E. Cleeton and N. H. Williams, Phys. Rev. 45, (1933) 234.https://doi.org/PHRVAO

  13. 13. I. I. Rabi, J. R. Zacharias, S. Millman and P. Kusch, Phys. Rev., 53, 318 (1938).https://doi.org/PHRVAO

  14. 14. L. W. Alvarez and F. Bloch, Phys. Rev. 57, 111 (1949).https://doi.org/PHRVAO

  15. 15. C. J. Gorter and L. J. F. Broer, Leiden Comm. 266a;
    Physica 9, 591 (1942).https://doi.org/PHYSAG

  16. 16. N. Bloembergen, Leiden Comm. 277a,
    Physica 15, 405 (1949); https://doi.org/PHYSAG
    F. Bruin and F. M. Schimmel, Physica 21, 867 (1955).https://doi.org/PHYSAG

  17. 17. L. J. Dijkstra, thesis, Amsterdam (1943);
    J. Volger, thesis, Leiden (1946).

  18. 18. E. K. Zavoiski, thesis, Kazan (1944).

  19. 19. J. H. Frenkel, Zh. Eksperim. i Teor. Fiz. 15, 409 (1945).https://doi.org/ZETFA7

  20. 20. E. K. Zavoisky, Journ. of Phys. USSR 9, 211 (1945)
    and E. K. Zavoisky, 10, 170 (1946).

  21. 21. C. J. Gorter and J. H. Van Vleck, Leiden Comm. Suppl. 97a, Phys. Rev. 72, 1128 (1947); https://doi.org/PHRVAO
    J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).https://doi.org/PHRVAO

  22. 22. F. Bloch, W. W. Hansen and M. Packard, Phys. Rev. 69, 683 (1946). https://doi.org/PHRVAO
    E. M. Purcell, H. C. Torrey and R. V. Pound, Phys. Rev. 69, 37 (1946).https://doi.org/PHRVAO

  23. 23. P. Debije, Phys. Z. 35, 923 (1934).https://doi.org/PHZTAO

  24. 24. N. Kurti and E. Simon, Proc. Roy. Soc., London A149, 152 (1935).

  25. 25. F. Simon, C. R. Conf. Magnetisme, Strasbourg, 3, 1 (1939).

  26. 26. C. J. Gorter, Cer. Langevin‐Perrin, Paris, 77 (1948);
    Leiden Comm. Suppl. 97d;
    Physica 14, 504 (1948).https://doi.org/PHYSAG

  27. 27. M. E. Rose, Phys. Rev. 75, 213 (1949).https://doi.org/PHRVAO

  28. 28. C. J. Gorter, D. de Klerk, O. J. Poppema, M. J. Steenland and Hl. de Vries, Physica 15, 679 (1949).https://doi.org/PHYSAG

  29. 29. R. P. Penrose, Leiden Comm. Suppl. 278b, Nature 163, 992 (1949).https://doi.org/NATUAS

  30. 30. J. M. Daniels, M. A. Grace and F. N. H. Robertson, Nature 168, 780 (1951).https://doi.org/NATUAS

  31. 31. C. J. Gorter, O. J. Poppema, M. J. Steenland and J. A. Beun, Leiden, Comm. 287b, Physica 17, 1050 (1951).https://doi.org/PHYSAG

  32. 32. B. Bleaney, Proc. Phys. Soc. A64, 15 (1951), https://doi.org/PPSOAU
    B. Bleaney, Phil. Mag. 42, 441 (1951).https://doi.org/PHMAA4

  33. 33. T. D. Lee and C. N. Yang, Phys.Rev. 104, 254 (1956).https://doi.org/PHRVAO

  34. 34. H. Postma, W. J. Huiskamp, A. R. Miedema, M. J. Steenland, H. A. Tolhoek and C. J. Gorter, Physica 23, 259 (1957).https://doi.org/PHYSAG

  35. 35. C. S. Wu, R. W. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Phys. Rev. 105, 1413 (1957).https://doi.org/PHRVAO

  36. 36. F. London, Phys. Rev. 74, 562 (1948); https://doi.org/PHRVAO
    also: F. London, Superfluids 1, 152 (1950).

  37. 37. L. Onsager, Nuovo Cim. 6, Suppl. 2, 249 (1949);
    R. P. Feynman, Progress in Low temp. physics 1, 17 (1955).

  38. 38. A. A. Abrikosov, JETP (USSR) 32, 1442 (1957).

  39. 39. A. R. de Vroomen, and C. van Baarle, Leiden Comm. 309b; Physica 23, 907 (1957).https://doi.org/PHYSAG

  40. 40. B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43 (1961); https://doi.org/PRLTAO
    R. Doll and N. Näbauer, Phys. Rev. Letters 7, 51 (1961).https://doi.org/PRLTAO

More about the Authors

C. J. Gorter. Director, Kamerlingh Onnes Laboratory.

Henry A. Boorse. Barnard College, Columbia University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1967_01.jpeg

Volume 20, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.