Discover
/
Article

A Semicentury of Semiconductors

OCT 01, 1993
Researchers and technologists have grappled with semiconductors for more than 50 years, and their labors have had a revolutionary impact on science and society.
Alan B. Fowler

For more than 50 years the symbiotic relationship among semiconductor physics, technology and device engineering has exemplified cooperative activity that spans the continuum of the scientific enterprise, from the purest physics to the marketplace. In physics this activity has led to the observation of unexpectedly rich and intricate phenomena; in technology it has resulted in expanded techniques and invention with broad applications and key contributions to the electronics, communications and computer revolutions. Semiconductors have changed our world profoundly and probably beneficially, touching the lives of almost everyone in it—and not just by fueling advances in data handling and communications but also by making possible such consumer staples as the transistor radio and the compact disk player. Some might choose to designate the last half‐century as the nuclear age or the jet age; others might think of it as the age of semiconductor electronics.

This article is only available in PDF format

References

  1. 1. Cited in L. Hoddeson, G. Baym, M. Eckert, in Out of the Crystal Maze, L. Hoddeson, E. Braun, J. Teichmann, S. Weart, eds., Oxford U.P., New York (1992), p. 121.

  2. 2. L. Hoddeson, G. Baym, M. Eckert, Rev. Mod. Phys. 59, 287 (1987).https://doi.org/RMPHAT

  3. 3. For a more nearly complete review of the history of this period, see E. Braun, in Out of the Crystal Maze, L. Hoddeson, E. Braun, J. Teichmann, S. Weart, eds., Oxford U.P., New York (1992), p. 443.

  4. 4. J. Bardeen, W. H. Brattain, Phys. Rev. 74, 230 (1948). https://doi.org/PHRVAO
    For one view of the history of the transistor see N. Holonyak Jr, PHYSICS TODAY, April 1992, p. 36.

  5. 5. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949). https://doi.org/BSTJAN
    For another view of the history of the transistor, see W. Shockley, IEEE Trans. Electron Devices 7, 597 (1976).https://doi.org/IETDAI

  6. 6. G. K. Teal, J. B. Little, Phys. Rev. 78, 63 (1967).https://doi.org/PHRVAO

  7. 7. F. Herman, Phys. Rev. 88, 1210 (1952). https://doi.org/PHRVAO
    F. Herman, J. Callaway, Phys. Rev. 89, 518 (1952).https://doi.org/PHRVAO

  8. 8. G. N. Pearson, G. H. Suhl, Phys. Rev. 83, 786 (1951). https://doi.org/PHRVAO
    B. Abeles, S. Meiboom, Phys. Rev. 95, 31 (1954).https://doi.org/PHRVAO

  9. 9. G. Dresselhaus, A. F. Kip, C. Kittel, Phys. Rev. 92, 827 (1953). https://doi.org/PHRVAO
    B. Lax, J. Ziegler, R. N. Dexter, E. S. Rosenblum, Phys. Rev. 93, 368 (1954).https://doi.org/PHRVAO

  10. 10. L. Esaki, Phys. Rev. 109, 603 (1958).https://doi.org/PHRVAO

  11. 11. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Salty, R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962). https://doi.org/PRLTAO
    M. I. Nathan, W. P. Dumke, G. Burns, F. H. DillJr, G. Lasher, Appl. Phys. Lett. 1, 62 (1962). https://doi.org/APPLAB
    T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, H. J. Zeiger, Appl. Phys. Lett. 1, 91 (1962). https://doi.org/APPLAB
    For a brief history of the semiconductor injection laser, see R. N. Hall, IEEE Trans. Electron Devices 7, 700 (1976).https://doi.org/IETDAI

  12. 12. For a brief review, see D. Kahng, IEEE Trans. Electron Devices 7, 655 (1976), and refs. therein.https://doi.org/IETDAI

  13. 13. A. B. Fowler, F. F. Fang, W. E. Howard, P. J. Stiles, Phys. Rev. Lett. 16, 1901 (1966).https://doi.org/PRLTAO

  14. 14. K. vonKlitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980).https://doi.org/PRLTAO

  15. 15. G. Lewicki, J. Maserjian, J. Appl. Phys. 46, 3032 (1975).https://doi.org/JAPIAU

  16. 16. R. Dingle, H. L. Störmer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 655 (1978).https://doi.org/APPLAB

  17. 17. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970).https://doi.org/IBMJAE

  18. 18. L. L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974).https://doi.org/APPLAB

  19. 19. D. C. Tsui, H. L. Störmer, A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).https://doi.org/PRLTAO

  20. 20. B. Van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. T. Kouwenhoven, D. van der Marel, C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988). https://doi.org/PRLTAO
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, J. Phys. C 21, L209 (1988).https://doi.org/JPSOAW

More about the authors

Alan B. Fowler, IBM Thomas J. Watson Research Center.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1993_10.jpeg

Volume 46, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.