Discover
/
Article

Synchrotron radiation from a plasma wakefield accelerator

MAR 01, 2008

A mainstay of the materials-science and bioscience research communities, the synchrotron light source provides a powerful, though large and expensive, probe of substances from the exotic to the mundane. To shrink those synchrotrons from today’s giant user facilities to something that can fit in a basement room is the goal of a multinational team led by Dino Jaroszynski (University of Strathclyde, Glasgow, UK). In a first step, the physicists coupled a high-intensity femtosecond laser, a plasma, and an undulator—a series of magnets through which electrons wiggle—to generate bursts of narrowband visible light. The intense field of a laser pulse produces waves in the plasma and rapidly accelerates electrons in a very short distance. Those high-energy electrons then navigate the undulator, radiating as they go. In the figure, the black dots show the light from the electron pulse depicted in the inset, while the red dots are from a different shot. In these early experiments, only about 1 in 10 laser pulses produced monoenergetic electron bunches, but the researchers think improvements can greatly increase the reproducibility and stability of the shots. Because laser-wakefield synchrotrons would be compact, inexpensive, and able to radiate from x rays down to microwaves, Jaroszynski says they could enable a wide range of applications in research, medicine, and industry. ( H.-P. Schlenvoigt et al. , Nat. Phys. 4 , 130, 2008.http://dx.doi.org/10.1103/PhysRevLett.4.130 )

PTO.v61.i3.19_1.d1.jpg

Related content
/
Article
The finding that the Saturnian moon may host layers of icy slush instead of a global ocean could change how planetary scientists think about other icy moons as well.
/
Article
/
Article
After a foray into international health and social welfare, she returned to the physical sciences. She is currently at the Moore Foundation.
/
Article
Modeling the shapes of tree branches, neurons, and blood vessels is a thorny problem, but researchers have just discovered that much of the math has already been done.
This Content Appeared In
pt-cover_2008_03.jpeg

Volume 61, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.