Discover
/
Article

Latest test appears to confirm spooky action at a distance

AUG 28, 2015
Physics Today

Nature : Quantum mechanics suggests that entangled particles share the same states and can communicate with each other instantaneously, regardless of the distance that separates them. Albert Einstein rejected that idea, which he labeled “spookiness,” and proposed instead that perhaps entangled particles have a predefined set of hidden properties that determine their later behavior. In the 1960s John Bell proposed that hidden variables could explain only a certain level of correlation, and several tests of that proposal have all favored spookiness. Those tests, however, had loopholes, either because too many of the entangled particles weren’t detectable or because the particles were too close together to tell if the “communication” between them was faster than light. Now, Ronald Hanson of Delft University of Technology in the Netherlands and his colleagues have performed the first Bell experiment that closes both loopholes. They used entangled photons to entangle electrons that were separated by 1.3 km, far enough apart to detect a time delay. When they measured the electrons, they detected enough of the entangled particles to surpass the threshold that Bell set. And the overall result of the experiment confirmed the standard quantum mechanical view of spooky action at a distance.

Related content
/
Article
The finding that the Saturnian moon may host layers of icy slush instead of a global ocean could change how planetary scientists think about other icy moons as well.
/
Article
/
Article
After a foray into international health and social welfare, she returned to the physical sciences. She is currently at the Moore Foundation.
/
Article
Modeling the shapes of tree branches, neurons, and blood vessels is a thorny problem, but researchers have just discovered that much of the math has already been done.

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.