Discover
/
Article

Fundamental Physical Constants

DEC 20, 2011
Physics Today

Table II | Table IV | Table VII | Table VIII

Fundamental physical constants (.pdf, 212 kb) Guide for metric practice (.pdf, 443 kb)

CODATA Recommended Values of the Fundamental Physical Constants—2006

Quantity

Symbol

Value

Unit

Relative standard uncertainty u r

UNIVERSAL

speed of light in vacuum

c, c 0

299 792 458

m s–1

(exact)

magnetic constant

µ 0

4π10 −7

N A −2

=12.566 370 614 . . . ×10 −7

N A −2

(exact)

electric constant 1/µ 0 c 2

ϵ0

8.854 187 817 . . . ×10 −12

F m −1

(exact)

characteristic impedance of vacuum √[µ 0 0]=µ 0 c

Z 0

376.730 313 461 . . .

Ω

(exact)

Newtonian constant of gravitation

G

6.674 28(67)×10 −11

m3 kg −1 s −2

1.0×10 −4

G/ℏc

6.708 81(67)×10 −39

c

1.0×10 −4

Planck constant

6.626 068 96(33)×10 −34

J s

5.0×10 −8

in eV s

4.135 667 33(10)×10 −15

eV s

2.5×10 −8

ℎ/2π

1.054 571 628(53)×10 −34

J s

5.0×10 −8

in eV s

6.582 118 99(16)×10 −16

eV s

2.5×10 −8

ℏc in MeV fm

197.326 9631(49)

MeV fm

2.5×10 −8

Planck mass (ℏc/G)1/2

m P

2.176 44(11)×10 −8

kg

5.0×10 −5

energy equivalent in GeV

m P c 2

1.220 892(61)×1019

GeV

5.0×10 −5

k

T P

1.416 785(71)×1032

K

5.0×10 −5

Planck length ℏ/m P c =(ℏG/c 3)1/2

l P

1.616 252(81)×10 −35

m

5.0×10 −5

Planck time l P/c=(ℏG/c 5)1/2

t P

5.391 24(27)×10 −44

s

5.0×10 −5

ELECTROMAGNETIC

elementary charge

e

1.602 176 487(40)×10 −19

C

2.5×10 −8

e/ℎ

2.417 989 454(60)×1014

A J −1

2.5×10 −8

magnetic flux quantum ℎ/2e

Φ 0

2.067 833 667(52)×10 −15

Wb

2.5×10 −8

conductance quantum 2e 2/ℎ

G 0

7.748 091 7004(53)×10 −5

S

6.8×10 −10

inverse of conductance quantum

G 0 −1

12 906.403 7787(88)

Ω

6.8×10 −10

Josephson constant a 2e/ℎ

K J

483 597.891(12)×109

Hz V −1

2.5×10 −8

von Klitzing constant b ℎ/e 2 = µ 0 c/2α

R K

25 812.807 557(18)

Ω

6.8×10 −10

Bohr magneton eℏ/2m e

µ B

927.400 915(23)×10 −26

J T −1

2.5×10 −8

in eV T −1

5.788 381 7555(79)×10 −5

eV T −1

1.4×10 −9

µ B/ℎ

13.996 246 04(35)×109

Hz T −1

2.5×10 −8

µ B/hc

46.686 4515(12)

m −1 T −1

2.5×10 −8

µ B/k

0.671 7131(12)

K T −1

1.7×10 −6

nuclear magneton eℏ/2m p

µ N

5.050 783 24(13)×10 −27

J T −1

2.5×10 −8

in eV T −1

3.152 451 2326(45)×10 −8

eV T −1

1.4×10 −9

µ N/ℎ

7.622 593 84(19)

MHz T −1

2.5×10 −8

µ N/hc

2.542 623 616(64)×10 −2

m −1 T −1

2.5×10 −8

µ N/k

3.658 2637(64)×10 −4

K T −1

1.7×10 −6

ATOMIC AND NUCLEAR

General

fine-structure constant e 2/4πϵ0ℏc

α

7.297 352 5376(50)×10 −3

6.8×10 −10

inverse fine-structure constant

α −1

137.035 999 679(94)

6.8×10 −10

Rydberg constant α 2 m e c/2ℎ

R

10 973 731.568 527(73)

m −1

6.6×10 −12

R ∞ c

3.289 841 960 361(22)×1015

Hz

6.6×10 −12

R ∞ hc

2.179 871 97(11)×10 −18

J

5.0×10 −8

R ∞ hc in eV

13.605 691 93(34)

eV

2.5×10 −8

Bohr radius α/4π R ∞ = 4πϵ02/m e e 2

a 0

0.529 177 208 59(36)×10 −10

m

6.8×10 −10

Hartree energy e 2/4πϵ0 a 0 = 2R ℎc = α 2 m e c 2

E h

4.359 743 94(22)×10 −18

J

5.0×10 −8

in eV

27.211 383 86(68)

eV

2.5×10 −8

quantum of circulation

ℎ/2m e

3.636 947 5199(50)×10 −4

m2 s −1

1.4×10 −9

ℎ/m e

7.273 895 040(10)×10 −4

m2 s −1

1.4×10 −9

Electroweak

Fermi coupling constant c

G F /(ℏc)3

1.166 37(1)×10 −5

GeV −2

8.6×10 −6

weak mixing angle d θ; W (on-shell scheme)

sin2 θ; W = s 2 W ×1−(m W /m Z)2

sin2 θ; W

0.222 55(56)

2.5×10 −3

Electron, e

electron mass

m e

9.109 382 15(45)×10 −31

kg

5.0×10 −8

in u, m e = A r(e) u (electron rel. atomic mass times u)

5.485 799 0943(23)×10 −4

u

4.2×10 −10

energy equivalent

m e c 2

8.187 104 38(41)×10 -14

J

5.0×10 −8

in MeV

0.510 998 910(13)

MeV

2.5×10 −8

electron–muon mass ratio

m e /m µ

4.836 331 71(12)×10 −3

2.5×10 −8

electron–tau mass ratio

m e /m τ

2.875 64(47)×10 −4

1.6×10 −4

electron–proton mass ratio

m e /m p

5.446 170 2177(24)×10 −4

4.3×10 −10

electron–neutron mass ratio

m e /m n

5.438 673 4459(33)×10 −4

6.0×10 −10

electron–deuteron mass ratio

m e /m d

2.724 437 1093(12)×10 −4

4.3×10 −10

electron to alpha particle mass ratio

m e /m α

1.370 933 555 70(58)×10 −4

4.2×10 −10

electron charge to mass quotient

−e/m e

−1.758 820 150(44)×1011

C kg −1

2.5×10 −8

electron molar mass N A m e

M(e), M e

5.485 799 0943(23)×10 −7

kg mol −1

4.2×10 −10

Compton wavelength ℎ/m e c

λ C

2.426 310 2175(33)×10 −12

m

1.4×10 −9

λ C/2π=α a 02/4π R

ƛC

386.159 264 59(53)×10 −15

m

1.4×10 −9

classical electron radius α 2 a 0

r e

2.817 940 2894(58)×10 −15

m

2.1×10 −9

Thomson cross section (8π/3) r e 2

σ e

0.665 245 8558(27)×10 −28

m2

4.1×10 −9

electron magnetic moment

µ e

−928.476 377(23)×10 −26

J T −1

2.5×10 −8

to Bohr magneton ratio

µ e B

−1.001 159 652 181 11(74)

7.4×10 −13

to nuclear magneton ratio

µ e N

−1838.281 970 92(80)

4.3×10 −10

electron magnetic moment anomaly |µ e |/µ B −1

a e

1.159 652 181 11(74)×10 −3

6.4×10 −10

electron g-factor −2(1+ a e)

g e

−2.002 319 304 3622(15)

7.4×10 −13

electron–muon magnetic moment ratio

µ e µ

206.766 9877(52)

2.5×10 −8

electron–proton magnetic moment ratio

µ e p

−658.210 6848(54)

8.1×10 −9

electron to shielded proton magnetic moment ratio

(H2O, sphere, 25 °C)

µ e /µ́p

−658.227 5971(72)

1.1×10 −8

electron–neutron magnetic moment ratio

µ e n

960.920 50(23)

2.4×10 −7

electron–deuteron magnetic moment ratio

µ e d

−2143.923 498(18)

8.4×10 −9

electron to shielded helion magnetic moment ratio

(gas, sphere, 25 °C)

µ e /µ́h

864.058 257(10)

1.2×10 −8

electron gyromagnetic ratio 2|µ e |/ℏ

γ e

1.760 859 770(44)×1011

s −1 T −1

2.5×10 −8

γ e /2π

28 024.953 64(70)

MHz T −1

2.5×10 −8

Muon, µ−

muon mass

m µ

1.883 531 30(11)×10 −28

kg

5.6×10 −8

in u, m µ= A r(µ) u (muon rel. atomic mass times u)

0.113 428 9256(29)

u

2.5×10 −8

energy equivalent

m µ c 2

1.692 833 510(95)×10 −11

J

5.6×10 −8

in MeV

105.658 3668(38)

MeV

3.6×10 −8

muon–electron mass ratio

m µ /m e

206.768 2823(52)

2.5×10 −8

muon–tau mass ratio

m µ /m τ

5.945 92(97)×10 −2

1.6×10 −4

muon–proton mass ratio

m µ /m p

0.112 609 5261(29)

2.5×10 −8

muon–neutron mass ratio

m µ /m n

0.112 454 5167(29)

2.5×10 −8

muon molar mass N A m µ

M(µ), M µ

0.113 428 9256(29)×10 −3

kg mol −1

2.5×10 −8

muon Compton wavelength ℎ/m µ c

λ C,µ

11.734 441 04(30)×10 −15

m

2.5×10 −8

λ C,µ /2π

ƛC,µ

1.867 594 295(47)×10 −15

m

2.5×10 −8

muon magnetic moment

µ µ

−4.490 447 86(16)×10 −26

J T −1

3.6×10 −8

to Bohr magneton ratio

µ µ B

−4.841 970 49(12)×10 −3

2.5×10 −8

to nuclear magneton ratio

µ µ N

−8.890 597 05(23)

2.5×10 −8

muon magnetic moment anomaly |µ µ |/(eℏ/2m µ )−1

a µ

1.165 920 69(60)×10 −3

5.2×10 −7

muon g-factor −2(1+ a µ )

g µ

−2.002 331 8414(12)

6.0×10 −10

muon–proton magnetic moment ratio

µ µ p

−3.183 345 137(85)

2.7×10 −8

Tau, τ−

tau mass e

m τ

3.167 77(52)×10 −27

kg

1.6×10 −4

in u, m τ = A r (τ) u (tau rel. atomic mass times u)

1.907 68(31)

u

1.6×10 −4

energy equivalent

m τ c 2

2.847 05(46)×10 −10

J

1.6×10 −4

in MeV

1776.99(29)

MeV

1.6×10 −4

tau–electron mass ratio

m τ /m e

3477.48(57)

1.6×10 −4

tau–muon mass ratio

m τ /m µ

16.8183(27)

1.6×10 −4

tau–proton mass ratio

m τ /m p

1.893 90(31)

1.6×10 −4

tau–neutron mass ratio

m τ /m n

1.891 29(31)

1.6×10 −4

tau molar mass N A m τ

M(τ), M τ

1.907 68(31)×10 −3

kg mol −1

1.6×10 −4

tau Compton wavelength ℎ/m τ c

λ C,τ

0.697 72(11)×10 −15

m

1.6×10 −4

λ C,τ /2π

ƛC,τ

0.111 046(18)×10 −15

m

1.6×10 −4

Proton, p

proton mass

m p

1.672 621 637(83)×10 −27

kg

5.0×10 −8

in u, m p = A r(p) u (proton rel. atomic mass times u)

1.007 276 466 77(10)

u

1.0×10 −10

energy equivalent

m p c 2

1.503 277 359(75)×10 −10

J

5.0×10 −8

in MeV

938.272 013(23)

MeV

2.5×10 −8

proton–electron mass ratio

m p /m e

1836.152 672 47(80)

4.3×10 −10

proton–muon mass ratio

m p /m µ

8.880 243 39(23)

2.5×10 −8

proton–tau mass ratio

m p /m τ

0.528 012(86)

1.6×10 −4

proton–neutron mass ratio

m p /m n

0.998 623 478 24(46)

4.6×10 −10

proton charge to mass quotient

e/m p

9.578 833 92(24)×107

C kg −1

2.5×10 −8

proton molar mass N A m p

M(p), M p

1.007 276 466 77(10)×10 −3

kg mol −1

1.0×10 −10

proton Compton wavelength ℎ/m p c

λ C,p

1.321 409 8446(19)×10 −15

m

1.4×10 −9

λ C,p/2π

ƛC,p

0.210 308 908 61(30)×10 −15

m

1.4×10 −9

proton rms charge radius

R p

0.8768(69)×10 −15

m

7.8×10 −3

proton magnetic moment

µ p

1.410 606 662(37)×10 −26

J T −1

2.6×10 −8

to Bohr magneton ratio

µ pB

1.521 032 209(12)×10 −3

8.1×10 −9

to nuclear magneton ratio

µ pN

2.792 847 356(23)

8.2×10 −9

proton g-factor 2µ pN

g p

5.585 694 713(46)

8.2×10 −9

proton–neutron magnetic moment ratio

µ pn

−1.459 898 06(34)

2.4×10 −7

shielded proton magnetic moment (H2O, sphere, 25 °C)

µ́p

1.410 570 419(38)×10 −26

J T −1

2.7×10 −8

to Bohr magneton ratio

µ́pB

1.520 993 128(17)×10 −3

1.1×10 −8

to nuclear magneton ratio

µ́pN

2.792 775 598(30)

1.1×10 −8

proton magnetic shielding correction 1 − µ́pp

(H2O, sphere, 25 °C)

σ́p

25.694(14)×10 −6

5.3×10 −4

proton gyromagnetic ratio 2µ p/ℏ

γ p

2.675 222 099(70)×108

s −1 T −1

2.6×10 −8

γ p /2π

42.577 4821(11)

MHz T −1

2.6×10 −8

shielded proton gyromagnetic ratio 2µ́p/ℏ

(H2O, sphere, 25 °C)

γ́p

2.675 153 362(73)×108

s −1 T −1

2.7×10 −8

γ́p/2π

42.576 3881(12)

MHz T −1

2.7×10 −8

Neutron, n

neutron mass

m n

1.674 927 211(84)×10 −27

kg

5.0×10 −8

in u, m n = A r(n) u (neutron rel. atomic mass times u)

1.008 664 915 97(43)

u

4.3×10 −10

energy equivalent

m n c 2

1.505 349 505(75)×10 −10

J

5.0×10 −8

in MeV

939.565 346(23)

MeV

2.5×10 −8

neutron–electron mass ratio

m n/m e

1838.683 6605(11)

6.0×10 −10

neutron–muon mass ratio

m n/m µ

8.892 484 09(23)

2.5×10 −8

neutron–tau mass ratio

m n/m τ

0.528 740(86)

1.6×10 −4

neutron–proton mass ratio

m n/m p

1.001 378 419 18(46)

4.6×10 −10

neutron molar mass N A m n

M(n), M n

1.008 664 915 97(43)×10 −3

kg mol −1

4.3×10 −10

neutron Compton wavelength ℎ/m n c

λ C,n

1.319 590 8951(20)×10 −15

m

1.5×10 −9

λ C,n/2π

ƛC,n

0.210 019 413 82(31)×10 −15

m

1.5×10 −9

neutron magnetic moment

µ n

−0.966 236 41(23)×10 −26

J T −1

2.4×10 −7

to Bohr magneton ratio

µ nB

−1.041 875 63(25)×10 −3

2.4×10 −7

to nuclear magneton ratio

µ nN

−1.913 042 73(45)

2.4×10 −7

neutron g-factor 2µ nN

g n

−3.826 085 45(90)

2.4×10 −7

neutron–electron magnetic moment ratio

µ ne

1.040 668 82(25)×10 −3

2.4×10 −7

neutron–proton magnetic moment ratio

µ np

−0.684 979 34(16)

2.4×10 −7

neutron to shielded proton magnetic moment ratio

(H2O, sphere, 25 °C)

µ n/µ́p

−0.684 996 94(16)

2.4×10 −7

neutron gyromagnetic ratio 2|µ n |/ℏ

γ n

1.832 471 85(43)×108

s −1 T −1

2.4×10 −7

γ n/2π

29.164 6954(69)

MHz T −1

2.4×10 −7

Deuteron, d

deuteron mass

m d

3.343 583 20(17)×10 −27

kg

5.0×10 −8

in u, m d = A r(d) u (deuteron rel. atomic mass times u)

2.013 553 212 724(78)

u

3.9×10 −11

energy equivalent

m d c 2

3.005 062 72(15)×10 −10

J

5.0×10 −8

in MeV

1875.612 793(47)

MeV

2.5×10 −8

deuteron–electron mass ratio

m d/m e

3670.482 9654(16)

4.3×10 −10

deuteron–proton mass ratio

m d/m p

1.999 007 501 08(22)

1.1×10 −10

deuteron molar mass N A m d

M(d), M d

2.013 553 212 724(78)×10 −3

kg mol −1

3.9×10 −11

deuteron rms charge radius

R d

2.1402(28)×10 −15

m

1.3×10 −3

deuteron magnetic moment

µ d

0.433 073 465(11)×10 −26

J T −1

2.6×10 −8

to Bohr magneton ratio

µ dB

0.466 975 4556(39)×10 −3

8.4×10 −9

to nuclear magneton ratio

µ dN

0.857 438 2308(72)

8.4×10 −9

deuteron g-factor µ dN

g d

0.857 438 2308(72)

8.4×10 −9

deuteron–electron magnetic moment ratio

µ de

−4.664 345 537(39)×10 −4

8.4×10 −9

deuteron–proton magnetic moment ratio

µ dp

0.307 012 2070(24)

7.7×10 −9

deuteron–neutron magnetic moment ratio

µ dn

−0.448 206 52(11)

2.4×10 −7

Triton, t

triton mass

m t

5.007 355 88(25)×10–27

kg

5.0×10 −8

in u, m t = A r(t) u (triton rel. atomic mass times u)

3.015 500 7134(25)

u

8.3×10 −10

energy equivalent

m t c 2

4.500 387 03(22)×10–10

J

5.0×10 −8

in MeV

2808.920 906(70)

MeV

2.5×10 −8

triton–electron mass ratio

m t/m e

5496.921 5269(51)

9.3×10 −10

triton–proton mass ratio

m t/m p

2.993 717 0309(25)

8.4×10 −10

triton molar mass N A m t

M(t), M t

3.015 500 7134(25)×10–3

kg mol −1

8.3×10 −10

triton magnetic moment

µ t

1.504 609 361(42)×10−26

J T−1

2.8×10−8

to Bohr magneton ratio

µ tB

1.622 393 657(21)×10−3

1.3×10−8

to nuclear magneton ratio

µ tN

2.978 962 448(38)

1.3×10−8

triton g-factor 2µ tN

g t

5.957 924 896(76)

1.3×10−8

triton–electron magnetic moment ratio

µ te

−1.620 514 423(21)×10−3

1.3×10−8

triton–proton magnetic moment ratio

µ tp

1.066 639 908(10)

9.8×10−9

triton–neutron magnetic moment ratio

µ tn

−1.557 185 53(37)

2.4×10−7

Helion, h

helion mass f

m h

5.006 411 92(25)×10−27

kg

5.0×10−8

in u, m h = A r(h) u (helion rel. atomic mass times u)

3.014 932 2473(26)

u

8.6×10−10

energy equivalent

m h c 2

4.499 538 64(22)×10−10

J

5.0×10−8

in MeV

2808.391 383(70)

MeV

2.5×10−8

helion–electron mass ratio

m h/m e

5495.885 2765(52)

9.5×10−10

helion–proton mass ratio

m h/m p

2.993 152 6713(26)

8.7×10−10

helion molar mass N A m h

M(h), M h

3.014 932 2473(26)×10−3

kg mol−1

8.6×10−10

shielded helion magnetic moment (gas, sphere, 25 °C)

µ́h

−1.074 552 982(30)×10−26

J T−1

2.8×10−8

to Bohr magneton ratio

µ́hB

−1.158 671 471(14)×10−3

1.2×10−8

to nuclear magneton ratio

µ́hN

−2.127 497 718(25)

1.2×10−8

shielded helion to proton magnetic moment ratio

(gas, sphere, 25 °C)

µ́hp

−0.761 766 558(11)

1.4×10−8

shielded helion to shielded proton

magnetic moment ratio (gas/H2O, spheres, 25 °C)

µ́h /µ́p

−0.761 786 1313(33)

4.3×10−9

shielded helion gyromagnetic ratio 2|µ́h |/ℏ (gas, sphere, 25 °C)

γ́h

2.037 894 730(56)×108

s−1 T−1

2.8×10−8

γ́h/2π

32.434 101 98(90)

MHz T−1

2.8×10−8

Alpha particle, α

alpha particle mass

m α

6.644 656 20(33)×10−27

kg

5.0×10−8

in u, m α = A r(α) u (alpha particle

rel. atomic mass times u)

4.001 506 179 127(62)

u

1.5×10−11

energy equivalent

m α c 2

5.971 919 17(30)×10−10

J

5.0×10−8

in MeV

3727.379 109(93)

MeV

2.5×10−8

alpha particle to electron mass ratio

m α /m e

7294.299 5365(31)

4.2×10−10

alpha particle to proton mass ratio

m α /m p

3.972 599 689 51(41)

1.0×10−10

alpha particle molar mass N A m α

M(α), M α

4.001 506 179 127(62)×10−3

kg mol−1

1.5×10−11

PHYSICOCHEMICAL

Avogadro constant

N A, L

6.022 141 79(30)×1023

mol−1

5.0×10−8

atomic mass constant

m u =1⁄12m(12C)=1 u=10−3 kg mol−1/N A

m u

1.660 538 782(83)×10−27

kg

5.0×10−8

energy equivalent

m u c 2

1.492 417 830(74)×10−10

J

5.0×10−8

in MeV

931.494 028(23)

MeV

2.5×10−8

Faraday constant g N A e

F

96 485.3399(24)

C mol−1

2.5×10−8

molar Planck constant

N A

3.990 312 6821(57)×10−10

J s mol−1

1.4×10−9

N A hc

0.119 626 564 72(17)

J m mol−1

1.4×10−9

molar gas constant

R

8.314 472(15)

J mol−1 K−1

1.7×10−6

Boltzmann constant R/N A

k

1.380 6504(24)×10−23

J K−1

1.7×10−6

in eV K−1

8.617 343(15)×10−5

eV K−1

1.7×10−6

k/ℎ

2.083 6644(36)×1010

Hz K−1

1.7×10−6

k/hc

69.503 56(12)

m−1 K−1

1.7×10−6

molar volume of ideal gas RT/p

T =273.15 K, p =101.325 kPa

V m

22.413 996(39)×10−3

m3 mol−1

1.7×10−6

Loschmidt constant N A/V m

n 0

2.686 7774(47)×1025

m−3

1.7×10−6

T =273.15 K, p =100 kPa

V m

22.710 981(40)×10−3

m3 mol−1

1.7×10−6

Sackur–Tetrode constant (absolute entropy constant) h

52+ln[(2π m u kT 1/ℎ 2)3/2 kT 1/p 0]

T 1 =1 K, p 0 =100 kPa

S 0/R

−1.151 7047(44)

3.8×10−6

T 1 =1 K, p 0 =101.325 kPa

−1.164 8677(44)

3.8×10−6

Stefan–Boltzmann constant (π 2/60)k 4/ℏ3 c 2

σ

5.670 400(40)×10−8

W m−2 K−4

7.0×10−6

first radiation constant 2π hc 2

c 1

3.741 771 18(19)×10−16

W m2

5.0×10−8

first radiation constant for spectral radiance 2hc 2

c 1L

1.191 042 759(59)×10−16

W m2 sr−1

5.0×10−8

second radiation constant hc/k

c 2

1.438 7752(25)×10−2

m K

1.7×10−6

Wien displacement law constants

b =λ max T = c 2/4.965 114 231 . . .

b

2.897 7685(51)×10−3

m K

1.7×10−6

b́=ν max/T =2.821 439 372 . . . c/c 2

5.878 933(10)×1010

Hz K−1

1.7×10−6


aSee the ‘Adopted values’ table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.


bSee the ‘Adopted values’ table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.


cValue recommended by the Particle Data Group (Yao et al., J. Phys. G 33, 1, 2006).


dBased on the ratio of the masses of the W and Z bosons m W/m Z recommended by the Particle Data Group (Yao et al., J. Phys. G 33, 1, 2006). The value for sin2 θ; W they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin2 θ;^W(M Z)=0.231 22(15).


eThis and all other values involving m τ are based on the value of m τ c 2 in MeV recommended by the Particle Data Group (Yao et al., J. Phys. G 33, 1, 2006), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of –0.26 MeV, &43;0.29 MeV.


fThe helion, symbol h, is the nucleus of the 3He atom.


gThe numerical value of F to be used in coulometric chemical measurements is 96 485.3401(48) [5.0×10–8] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants KJ–90 and RK–90 given in the ‘Adopted values’ table.


hThe entropy of an ideal monoatomic gas of relative atomic mass A r is given by S=S 0+32 R ln A r–R ln(p/p 0)&43;52 R ln(T/K).

Internationally Adopted Values of Various Quantities

Quantity

Symbol

Value

Unit

Relative standarduncertainty u r

relative atomic mass a of 12C

A r(12C)

12

(exact)

molar mass constant

M u

1 ×10 −3

kg mol −1

(exact)

molar mass of 12C

M(12C)

12 ×10 −3

kg mol −1

(exact)

conventional value of Josephson constant b

K J−90

483 597.9

GHz V −1

(exact)

conventional value of von Klitzing constant c

R K−90

25 812.807

Ω

(exact)

standard atmosphere

101 325

Pa

(exact)


aThe relative atomic mass A r(X) of particle X with mass m(X) is defined by A r(X) = m(X)/m u, where m u = m(12C)/12 = M u/N A = 1 u is the atomic mass constant, M u is the molar mass constant, N A is the Avogadro constant, and u is the unified atomic mass unit. Thus the mass of particle X is m(X) = A r(X) u and the molar mass of X is M(X) = A r(X)M u.


bThis is the value adopted internationally for realizing representations of the volt using the Josephson effect.


cThis is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

CODATA Recommended Values of Energy Equivalents—2006

Relevant unit

J

kg

m -1

Hz

1 J

(1 J) = 1 J

(1 J)/c 2 = 1.112 650 056 . . . ×10 −17 kg

(1 J)/hc = 5.034 117 47(25) ×1024 m −1

(1 J)/ℎ = 1.509 190 450(75) ×1033 Hz

1 kg

(1 kg)c 2 = 8.987 551 787 . . . ×1016 J

(1 kg) = 1 kg

(1 kg)c/ℎ = 4.524 439 15(23) ×1041 m −1

(1 kg)c 2/ℎ = 1.356 392 733(68) ×1050 Hz

1 m −1

(1 m −1)hc = 1.986 445 501(99) ×10 −25 J

(1 m −1)ℎ/c = 2.210 218 70(11) ×10 −42 kg

(1 m −1) = 1 m −1

(1 m −1)c = 299 792 458 Hz

1 Hz

(1 Hz)ℎ = 6.626 068 96(33) ×10 −34 J

(1 Hz)ℎ/c 2 = 7.372 496 00(37) ×10 −51 kg

(1 Hz)/c = 3.335 640 951 . . . ×10 −9 m −1

(1 Hz) = 1 Hz

1 K

(1 K)k = 1.380 6504(24) ×10 −23 J

(1 K)k/c 2 = 1.536 1807(27) ×10 −40 kg

(1 K)k/hc = 69.503 56(12) m −1

(1 K)k/ℎ = 2.083 6644(36) ×1010 Hz

1 eV

(1 eV) = 1.602 176 487(40) ×10 −19 J

(1 eV)/c 2 = 1.782 661 758(44) ×10 −36 kg

(1 eV)/hc = 8.065 544 65(20) ×105 m −1

(1 eV)/ℎ = 2.417 989 454(60) ×1014 Hz

1 u

(1 u)c 2 = 1.492 417 830(74) ×10 −10 J

(1 u) = 1.660 538 782(83) ×10 −27 kg

(1 u)c/ℎ = 7.513 006 671(11) ×1014 m −1

(1 u)c 2/ℎ = 2.252 342 7369(32) ×1023 Hz

1 E h

(1 E h) = 4.359 743 94(22) ×10 −18 J

(1 E h)/c 2 = 4.850 869 34(24) ×10 −35 kg

(1 E h)/hc = 2.194 746 313 705(15) ×107 m −1

(1 E h)/ℎ = 6.579 683 920 722(44) ×1015 Hz


The values of some energy equivalents derived from the relations E = mc 2 = hc/λ = h ν = kT, and based on the 2006 CODATA adjustment of the values of the constants; 1 eV = (e/C) J, 1 u = m u = 112 m(12C) = 10 −3 kg mol −1/N A, and E h = 2R hc = α 2 m e c 2 is the Hartree energy (hartree).

CODATA Recommended Values of Energy Equivalents—2006

Relevant unit

K

eV

u

E h

1 J

(1 J)/k = 7.242 963(13) ×1022 K

(1 J) = 6.241 509 65(16) ×1018 eV

(1 J)/c 2 = 6.700 536 41(33) ×109 u

(1 J) = 2.293 712 69(11) ×1017 E h

1 kg

(1 kg)c 2/k = 6.509 651(11) ×1039 K

(1 kg)c 2 = 5.609 589 12(14) ×1035 eV

(1 kg) = 6.022 141 79(30) ×1026 u

(1 kg)c 2 = 2.061 486 16(10) ×1034 E h

1 m −1

(1 m −1)hc/k = 1.438 7752(25) ×10 −2 K

(1 m −1)hc = 1.239 841 875(31) ×10 −6 eV

(1 m −1)ℎ/c = 1.331 025 0394(19) ×10 −15 u

(1 m −1)hc = 4.556 335 252 760(30) ×10 −8 E h

1 Hz

(1 Hz)ℎ/k = 4.799 2374(84) ×10 −11 K

(1 Hz)ℎ = 4.135 667 33(10) ×10 −15 eV

(1 Hz)ℎ/c 2 = 4.439 821 6294(64) ×10 −24 u

(1 Hz)ℎ = 1.519 829 846 006(10) ×10 −16 E h

1 K

(1 K) = 1 K

(1 K)k = 8.617 343(15) ×10 −5 eV

(1 K)k/c 2 = 9.251 098(16) ×10 −14 u

(1 K)k = 3.166 8153(55) ×10 −6 E h

1 eV

(1 eV)/k = 1.160 4505(20) ×104 K

(1 eV) = 1 eV

(1 eV)/c 2 = 1.073 544 188(27) ×10 −9 u

(1 eV) = 3.674 932 540(92) ×10 −2 E h

1 u

(1 u)c 2/k = 1.080 9527(19) ×1013 K

(1 u)c 2 = 931.494 028(23) ×10 6 eV

(1 u) = 1 u

(1 u)c 2 = 3.423 177 7149(49) ×107 E h

1 E h

(1 E h)/k = 3.157 7465(55) ×105 K

(1 E h) = 27.211 383 86(68) eV

(1 E h)/c 2 = 2.921 262 2986(42) ×10 −8 u

(1 E h) = 1 E h


The values of some energy equivalents derived from the relations E = mc 2 = hc/λ = h ν = kT, and based on the 2006 CODATA adjustment of the values of the constants; 1 eV = (e/C) J, 1 u = m u = 112 m(12C) = 10 −3 kg mol −1/N A, and E h = 2R hc = α 2 m e c 2 is the Hartree energy (hartree).

Return to top of page

Related content
/
Article
The finding that the Saturnian moon may host layers of icy slush instead of a global ocean could change how planetary scientists think about other icy moons as well.
/
Article
/
Article
After a foray into international health and social welfare, she returned to the physical sciences. She is currently at the Moore Foundation.
/
Article
Modeling the shapes of tree branches, neurons, and blood vessels is a thorny problem, but researchers have just discovered that much of the math has already been done.

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.