Discover
/
Article

Collisions between carbon dioxide molecules

JUN 01, 2008

DOI: 10.1063/1.4796876

Can affect greenhouse warming. Visible light coming from the Sun pours down daily and is reflected back from Earth’s surface as IR radiation. Extra warming occurs when some of that IR is absorbed and retained in the atmosphere. Only a trace gas in the atmosphere, CO2 is far outnumbered by O2 and N2 molecules, but its growing presence (mostly due to human activity) and its ability to absorb and trap IR radiation are thought to be instrumental in producing greenhouse effects. The interactions between atoms in a single molecule generate the molecule’s dipole moment and polarizability, two properties that greatly affect how the molecule absorbs or scatters radiation. Going to the next level of complexity, a new study shows in detail how a large class of molecules, including CO2, absorbs and sometimes scatters light energy during intermolecular collisions. Michael Chrysos and his colleagues at the University of Angers (France) and Saint Petersburg State University (Russia) have derived exact mathematical formulas that can be used to calculate how collisions between so-called linear-rotor molecules modify the molecules’ absorption spectra. During a molecular interaction, a transient supermolecular complex arises with its own degrees of freedom—distinct from those of the constituent molecules—and its own dipole moment or polarizability. The net result is that a broad band of frequencies, including many that are unavailable to single molecules, can be absorbed or scattered. The new study is important for several reasons: It allows exact calculations of how the intercepted IR photon energy is converted to kinetic energy and shared among neighboring gas molecules; it allows for the inclusion of higher-order effects, such as the simultaneous collision of three molecules; and it provides evidence that long-range intermolecular interactions are far more important than short-range ones for absorption, a conclusion in conflict with mainstream assumptions. (M. Chrysos et al., Phys. Rev. Lett. 100 , 133007, 2008 .http://dx.doi.org/10.1103/PhysRevLett.100.133007 )

This Content Appeared In
pt-cover_2008_06.jpeg

Volume 61, Number 6

Related content
/
Article
/
Article
/
Article
/
Article
/
Article
Despite the tumultuous history of the near-Earth object’s parent body, water may have been preserved in the asteroid for about a billion years.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.