Discover
/
Article

An “orbital glass” of electron clouds

MAR 01, 2005

DOI: 10.1063/1.4796921

Can appear at low temperatures. In the modern picture of quantum mechanics, electron orbitals—which have various shapes including spheres and dumbbells—are thought of as clouds and represent the general region within which one may find an electron at any given time. A typical electronic transition, say between the degenerate states of a vertically oriented dumbbell and a horizontal one, occurs in femtoseconds. Now, scientists from Germany and Moldova have found evidence that these and other orbital processes can slow dramatically—by up to 14 orders of magnitude—for electrons in low-temperature, single-crystal FeCr2S4, a mineral with a relatively simple crystalline structure. The researchers found evidence that these frozen electron orbitals have glassy characteristics, including a residual entropy at 0 K, a hump in the crystal’s temperature-dependent specific heat, and broadened relaxation dynamics. In contrast to conventional glasses, a complete freeze of the electron clouds is precluded by quantum-mechanical tunneling: The clouds keep making transitions between different low-energy configurations without requiring thermal energy input. (R. Fichtl et al., Phys. Rev. Lett. 94, 027601, 2005.http://dx.doi.org/10.1103/PhysRevLett.94.027601 )

This Content Appeared In
pt-cover_2005_03.jpeg

Volume 58, Number 3

Related content
/
Article
/
Article
/
Article
/
Article
/
Article
Despite the tumultuous history of the near-Earth object’s parent body, water may have been preserved in the asteroid for about a billion years.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.