Discover
/
Article

An elementary particle collision never before observed

OCT 01, 2014

DOI: 10.1063/PT.3.2540

In the standard model of particle physics, the W+, W, and Z are so-called vector bosons that transmit the weak force responsible for nuclear decay. But those bosons can also scatter off each other with a cross section that is sensitive to the many details of the theory. Vector-boson scattering is rare; for example, at the Large Hadron Collider the process happens less often than Higgs boson production. Thus, it had never been used to probe particle theory’s accepted paradigm. But ATLAS team members at the LHC have now spotted 34 candidate WW scattering events. The W bosons are neither the particles crashed together by the LHC (those are protons) nor the outgoing particles detected by ATLAS. Rather, as illustrated in the Feynman diagram, during the collision a W (here a W+) is radiated by a quark in each of the protons. After scattering, each W+ decays into a positron or antimuon—both members of a larger particle class called leptons—and an undetected neutrino. The outgoing quarks, which cannot exist in isolation, are manifest as particle jets. The experimental signature of the W+W+ scattering is thus two positive leptons, two jets, and missing neutrino energy. With sophisticated numerical calculations and background corrections, the ATLAS researchers conclude that their observations are consistent with the standard model. As the LHC collision energy rises and precision improves, vector-boson scattering may test the Higgs mechanism of the model in detail and even point to new, nonstandard physics. (G. Aad et al., ATLAS collaboration, Phys. Rev. Lett., in press.)

PTO.v67.i10.19_1.f1.jpg

Related content
/
Article
The astrophysicist turned climate physicist connects science with people through math and language.
/
Article
As scientists scramble to land on their feet, the observatory’s mission remains to conduct science and public outreach.
This Content Appeared In
pt-cover_2014_10.jpeg

Volume 67, Number 10

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.