Discover
/
Article

A graphene-based digital camera

AUG 01, 2017

At the heart of a smartphone camera is CMOS circuitry that registers the electrons produced when visible light strikes a silicon wafer. Other semiconductors coupled to CMOS circuits could enable cameras to image in the UV, IR, and terahertz bands; such detectors could see applications for night vision, food inspection, environmental monitoring, and more. Now a research team led by Gerasimos Konstantatos and Frank Koppens of the Institute of Photonic Sciences (ICFO) in Barcelona, Spain, has taken the first steps toward that possible future: It has coupled a graphene–quantum dot photodetector to a CMOS circuit to create an imaging chip sensitive to wavelengths ranging from 300 nm to 1850 nm. (The group’s earlier related work was discussed in Physics Today, July 2012, page 15 .)

The researchers’ device, whose surface is roughly 15 mm × 15 mm, has almost 120 000 active pixels, plus a row of insensitive “blind” pixels. The left side of the figure shows a side-view schematic of a single pixel. A graphene layer lies atop the CMOS; the photosensitive material, lead sulfide quantum dots, is deposited on the graphene. When light hits a PbS quantum dot it creates electron–hole (e–h) pairs. The holes enter the graphene layer, where they flow due to a voltage applied across each pixel. The device measures light intensity by comparing the current in an active pixel with that in the blind pixels. The right side of the figure shows the result: a view of a pear and apple illuminated with IR light. (S. Goossens et al., Nat. Photonics 11, 366, 2017, doi:10.1038/nphoton.2017.75 .)

PTO.v70.i8.24_1.f1.jpg

Related content
/
Article
The finding that the Saturnian moon may host layers of icy slush instead of a global ocean could change how planetary scientists think about other icy moons as well.
/
Article
/
Article
After a foray into international health and social welfare, she returned to the physical sciences. She is currently at the Moore Foundation.
/
Article
Modeling the shapes of tree branches, neurons, and blood vessels is a thorny problem, but researchers have just discovered that much of the math has already been done.
This Content Appeared In
pt_cover0817_no_label.jpg

Volume 70, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.