Discover
/
Article

Wiggler and undulator magnets

MAY 01, 1981
Two new devices are being added to synchrotron radiation sources to extend the spectral range and increase brightness.
Herman Winick
George Brown
Klaus Halbach
John Harris

To scientists using vacuum ultraviolet and x rays the most important characteristics of an ideal radiation source would be a high intensity within a small solid angle and a high intensity within a small wavelength interval, both extending over a broad range of wavelengths. High spatial brightness (large flux within a small solid angle) permits the delivery of a large number of photons per second to a small sample. High spectral brightness (large flux within a narrow wavelength interval) is essential for high‐resolution spectroscopy. A high‐power tunable vuv and x‐ray laser would be ideal, but unfortunately such a laser does not yet exist. Conventional vuv sources (such as gas‐discharge lamps) and x‐ray sources (such as electron‐impact x‐ray tubes) can produce a large flux of radiation, most of which is indeed within a narrow bandwidth at particular fluorescent lines. However, the flux is diffused over a large solid angle and the wavelength is fixed. The continuum radiation from these sources is less intense than the narrow fluorescence peaks by about four orders of magnitude. Other sources exist, such as laser plasma sources and sliding‐spark devices, that provide more intense continuum radiation but have other limitations, such as low repetition rate, limited spectral range and attendant debris.

This article is only available in PDF format

References

  1. 1. H. Winick, T. Knight, eds., Wiggler Magnets, SSRL Report 77/05 (From SSRL, SLAC Bin 69, Stanford, Cal. 94305).

  2. 2. A. Luccio, A. Reales, S. Stipcich, eds., Proc. Wiggler Conf. June 1978. From Laboratori Nazionale de Frascati casella Postale 13, I‐00044 Frascati (Roma).

  3. 3. D. Thompson, R. Coisson, J. Le Duff, F. Dupont, M. Erickson, A. Hofmann, D. Husmann, G. Mülhaupt, M. Poole, M. Renard, M. Sommer, V. Suller, S. Tazzari, F. Wang, IEEE Trans. Nucl. Sci. NS‐28, (to be published in June 1981).

  4. 4. V. L. Ginzberg, Izv.mAkad. Nauk. SSSR, Ser. Fiz., 11, 165 (1947).

  5. 5. H. Motz, W. Thon, R. N. Whitehurst, J. Appl. Phys. 24, 826 (1953).

  6. 6. D. F. Alferov, Yu. A. Bashmakov, K. A. Belovintsev, E. G. Bessonov, P. A. Cerenkov, Particle Accelerators 9, 223 (1979).

  7. 7. A. N. Didenko, A. V. Kozhevnikov, A. F. Medvedev, M. M. Nikitin, V. Ya. Epp, Zh. Eksp. Teor. Fiz. 76, 1919 (1979); https://doi.org/ZETFA7
    or A. N. Didenko, A. V. Kozhevnikov, A. F. Medvedev, M. M. Nikitin, V. Ya. Epp, Sov. Phys. JETP 49, 973 (1979).

  8. 8. B. M. Kincaid, Appl. Phys. 38, 2684 (1977).

  9. 9. A. Hofmann, Nucl. Instr. Meth. 152, 17 (1978).

  10. 10. R. Coisson, Phys. Rev. A 20, 5248 (1979).

  11. 11. D. J. Thompson, M. W. Poole, eds., European Synchrotron Radiation Facility‐Supplement II; pages 52, also page 17; European Science Foundation, Strasbourg, (1979).

  12. 12. J. Spencer, H. Winick in Synchrotron Radiation Research, H. Winick, S. Doniach, eds., Plenum, New York 1980, page 663.

  13. 13. S. Krinsky, Nucl. Instr. Meth. 172, 73 (1980).

  14. 14. Y. Farge, App. Opt. 19, 4021 (1980).

  15. 15. K. Halbach, J. Chin, E. Hoyer, H. Winick, R. Cronin, J. Yang, Y. Zambre, IEEE Trans. Nucl. Sci. NS‐28, (to be published in June 1981);
    see also K. Halbach, Nucl. Instr. Meth. (to be published).

  16. 16. A. Hofman, R. Little, J. M. Paterson, K. W. Robinson, G. A. Voss, H. Winick, Proc. 6th Int. Conf. on High Energy Accel. CEAL‐2000 Sept. 1967, page 123.

  17. 17. J. R. Rees, IEEE Trans. Nucl. Sci. NS‐24, 1836 (1977).

  18. 18. M. Berndt, W. Brunk, R. Cronin, D. Jenson, A. King, J. Spencer, T. Taylor, H. Winick, IEEE Trans. Nucl. Sci. NS‐26, 3812 (1979);
    also H. Winick, J. Spencer, Nucl. Instr. Meth. 172, 45 (1980).

  19. 19. L. M. Barkov, V. B. Baryshev, G. N. Kulipanov, N. A. Mezentsev, V. G. Pindyurin, A. N. Skrinsky, V. M. Khorev, Nucl. Instr. Meth. 152, 23 (1978).

  20. 20. H. Winick, R. Helm, Nucl. Instr. Meth. 152, 9 (1978).

  21. 21. V. Suller, Nucl. Instr. Meth. 172, 39 (1980).

  22. 22. H. Kitamura, Jap. Jour. Appl. Phys. 19, L185 (1980).

  23. 23. A. Hofmann, Physics Reports 64, 253 (1980).

More about the Authors

Herman Winick. Stanford Synchrotron Radiation Laboratory.

George Brown. Stanford Synchrotron Radiation Laboratory.

Klaus Halbach. Lawrence Berkeley Laboratory.

John Harris. Stanford Linear Accelerator Center.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1981_05.jpeg

Volume 34, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.