Discover
/
Article

What the exploration of Mars tells us about Earth

JUL 01, 1977
The fabulous success of the Viking mission to Mars has thrown new light on questions such as plate tectonics, climatic changes and the early history of atmospheres and life on Earth.
S. Ichtiaque Rasool
Donald M. Hunten
William M. Kaula

The success of the Viking missions has a special significance for the student of planetary evolution who considers such questions as: How did the atmosphere and oceans originate on Earth? What circumstances created the benign environments at the surface of Earth so that the first synthesis of living organisms could take place three to four billion years ago? What do continental drift, earthquakes, and other surface tectonic and volcanic activity indicate about the interior and its evolution? What stimulates a long‐term climatic change—such as an ice age? It is interesting that the experiments being performed by Viking touch on each of these questions and that data from Mars will contribute significantly to scientific progress in these fields. In essence we are trying to understand why Earth and Mars evolved so differently (see figure 1).

This article is only available in PDF format

References

  1. 1. Collections of Viking papers are published in Science 193, no. 4255;
    194, nos. 4260, 4271 (1976).

  2. 2. A. B. Ronov, M. A. Yaroshevsky, in The Earth’s Crust and Upper Mantle (P. J. Hart ed.) AGU Mono. 13, 37 (1969);
    P. W. Gast in The Nature of the Solid Earth (E. C. Robertson, ed.) McGraw‐Hill, New York, (1972), page 19.

  3. 3. K. Burke, J. T. Wilson, Scientific American, August 1976, page 46.

  4. 4. K. Burke, W. S. F. Kidd, J. T. Wilson, Nature 245, 133 (1973); https://doi.org/NATUAS
    P. Molnar, J. Francheteau, Geophys. J.R.A.S. 43, 763 (1975).

  5. 5. S. S. Sun, G. N. Hanson, Geology 3, 297 (1975).https://doi.org/GLGYBA

  6. 6. G. G. Schaber, Geochim. Cosmochim. Acta 37, Suppl. 4, 73 (1973); https://doi.org/GCACAK
    J. W. Head, Rev. Geophys. Space Phys. 14, 265 (1976).https://doi.org/RGPSBL

  7. 7. R. J. Philips, R. S. Saunders, J. E. Conel, J. Geophys. Res. 78, 4815 (1973).https://doi.org/JGREA2

  8. 8. W. M. Kaula, Icarus 26, 1 (1975).https://doi.org/ICRSA5

  9. 9. W. W. Rubey, Bull. Geol. Soc. Am. 62, 1111 (1951); https://doi.org/BUGMAF
    reprinted in The Origin and Evolution of Atmospheres and Oceans (P. J. Brancaio, A. G. W. Cameron, eds.) Wiley, New York (1964).

  10. 10. B. Mason, Principles of Geochemistry, 3rd ed. Wiley, New York (1966).

  11. 11. K. K. Turekian, S. P. Clark, Jr, J. Atmos. Sci. 32, 1257 (1975).https://doi.org/JAHSAK

  12. 12. A. G. W. Cameron, Space Sci. Rev. 15, 121 (1973).https://doi.org/SPSRA4

  13. 13. H. Brown, in The Atmospheres of the Earth and Planets (G. P. Kuiper, ed.) University of Chicago Press, Chicago (1949, 1952).
    H. E. Suess, J. Geol. 51, 600 (1949).https://doi.org/JGEOAZ

  14. 14. J. T. Wasson, Meteorites, Springer‐Verlag, New York (1974).

  15. 15. K. K. Turekian, in The Origin and Evolution of Atmospheres and Oceans (P. J. Brancaio, A. G. W. Cameron, eds.) Wiley, New York (1964).

  16. 16. W. B. Hubbard, W. L. Slattery, in Jupiter (T. Gehrels, ed.) Univ. Arizona Press, Tucson (1976), pages 176–194.

  17. 17. J. W. Larimer, Space Sci. Rev. 15, 103 (1973).https://doi.org/SPSRA4

  18. 18. J. S. Stacey, J. D. Kramers, Earth Plan. Sci. Let. 26, 207 (1975).https://doi.org/EPSLA2

  19. 19. M. B. McElroy, T. Y. Kong, Y. L. Yung, A. O. Nier, Science 194, 1295 (1976).https://doi.org/SCIEAS

  20. 20. T. Owen, K. Biemann, D. R. Rushneck, J. E. Biller, D. W. Howarth, A. L. LaFleur, Science 194, 1293 (1976).https://doi.org/SCIEAS

  21. 21. T. M. Usselman, Amer. J. Sci. 275, 291 (1975).https://doi.org/AJSCAP

  22. 22. J. V. Smith, Proc. 8th Lun. Sci. Conf., in press (1977).

  23. 23. E. Anders, Phil. Trans. Royal Soc., Chemical composition of the Moon, Earth, and eucrite parent body, in press, (1977).

  24. 24. S. I. Rasool, L. LeSergeant, Nature, in press (1977).

  25. 25. Handbook of Elemental Abundances in Meteorites, (B. Mason ed.) Gordon and Breach, New York (1971).

  26. 26. V. S. SaFronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, NASA Tech. Trans. F‐677, Washington, (1972).

  27. 27. F. P. Faruk, Chemical Geology 8, 79 (1971).https://doi.org/CHGEAD

  28. 28. D. H. Johnston, T. R. McGetchin, M. N. Toksoz, J. Geophys. Res. 79, 3959 (1974).https://doi.org/JGREA2

  29. 29. F. P. Fanale, W. A. Cannon, J. Geophys. Res. 79, 3397 (1974).https://doi.org/JGREA2

  30. 30. M. B. McElroy, Y. L. Yung, A. O. Nier, Science 194, 70 (1976).https://doi.org/SCIEAS

  31. 31. J. Lovell and ten others, Icarus 18, 304 (1973).https://doi.org/ICRSA5

  32. 32. R. J. Phillips, M. Tiernan, J. Geophys. Res. 81, in press (1977).https://doi.org/JGREA2

  33. 33. K. Biemann and ten others, Science 194, 72 (1976).https://doi.org/SCIEAS

  34. 34. E. Anders, R. Hayatsu, M. H. Studier, Science 182, 781 (1973).https://doi.org/SCIEAS

  35. 35. D. M. Hunten, Rev. Geophys. Space Phys. 12, 529 (1974); https://doi.org/RGPSBL
    R. L. Huguenin, J. Geophys. Res. 79, 3895 (1974).https://doi.org/JGREA2

  36. 36. Panel on Climatic Variation, US Committee for the Global Atmospheric Research Program, Understanding Climatic Chang, National Academy of Sciences, Washington (1975).

  37. 37. J. D. Hays, J. Imbrie, N. J. Shackleton, Science 194, 1121 (1976).https://doi.org/SCIEAS

  38. 38. W. R. Ward, J. Geophys. Res. 79, 3375 (1974).https://doi.org/JGREA2

  39. 39. C. Sagan, O. B. Toon, P. J. Gierasch, Science 181, 1045 (1973).https://doi.org/SCIEAS

More about the Authors

S. Ichtiaque Rasool. Office of Space Science, NASA.

Donald M. Hunten. Kitt Peak National Observatory, Tucson.

William M. Kaula. University of California, Los Angeles.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1977_07.jpeg

Volume 30, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.