The search for high‐temperature superconductors
DOI: 10.1063/1.3022880
Since 1911 superconductivity at room temperature has been the dream of scientists and science‐fiction writers alike. Unfortunately for superconductivity, the boundary between these two dream worlds has become totally blurred during the last decade. Still, today, superconductivity at room temperature together with controlled thermonuclear fusion are often mentioned as the two most important and crucial problems in physics relevant to the needs of society. Controlled fusion has now become a distinct possibility, and its progress over the last twenty years has covered many orders of magnitude. During this same time, superconducting transition temperatures have expanded from a range of 0.4 K to 16 K to a range stretching from 0.0002 K to 21 K. If this upper limit could be further increased, not by another order of magnitude, but by a factor of as little as 1.2, or as large as 1.5, superconductivity, while still far from room temperature, would revolutionize our technology. This revolution would encompass electric power transmission, electric motors, high‐field electromagnets, and the metallurgy of magnetic suspensions as a whole. In this article I will explain why I believe that this factor of 1.5 is a distinct possibility. I will also explain why room‐temperature superconductivity (regardless of a thousand statements by theorists and an equal number of theories) is—in my opinion—pure science fiction.
References
1. A. C. Mota, P. M. Brewster, A. C. Lawson, R. W. Fitzgerald, J. H. Bishop, Phys. Lett. 34A, 160 (1971).
2. G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. HullJr, H. L. Luo, B. T. Matthias, W. H. Zachariasen, “Superconductivity of Nb3(Al‐Ge) Above 20.5 K),” Proc. Natl. Acad. Sci. US 61, 621 (1968).
3. Intermetallic Compounds, (J. H. Westbrook, ed) Wiley, New York (1967);
“Progress in Cryogenics,” Vol. IV, pages 160–231, Heywood, London (1964);
National Bureau of Standards Technical Note No. 482. US Department of Commerce (1969).4. B. T. Matthias, J. L. Olsen, Phys. Lett. 13, 202 (1964).https://doi.org/PHLTAM
5. T. R. R. McDonald, E. Gregory, G. S. Barberich, D. B. McWhan, T. H. Geballe, J. W. HullJr, Phys. Lett. 14, 16 (1965).https://doi.org/PHLTAM
6. B. T. Matthias, Physics of Solids at High Pressures, (C. T. Tomizuka, R. M. Emrick, eds.) Academic, New York (1965), page 225.
7. J. Wittig, Phys. Rev. Lett. 15, 159 (1965).https://doi.org/PRLTAO
8. J. Wittig, Z. Physik 195, 215 (1966).https://doi.org/ZEPYAA
9. I. V. Berman, N. B. Brandt, JETP Letters 10, 55 (1969).https://doi.org/JTPLA2
10. J. Wittig, B. T. Matthias, Science 160, 994 (1968).https://doi.org/SCIEAS
11. J. Wittig, Phys. Rev. Lett. 21, 1250 (1968).https://doi.org/PRLTAO
12. J. Wittig, B. T. Matthias, Phys. Rev. Lett. 22, 634 (1969).https://doi.org/PRLTAO
13. J. Wittig, Phys. Rev. Lett. 24, 812 (1970).https://doi.org/PRLTAO
14. “Superconductivity,” (A Summary Account of the International Superconductivity Conference at Colgate University, August 26–29) physics today, February 1964, page 31.
15. N. B. Brandt, N. I. Ginzburg, Scientific American, April 1971, page 83.
16. M. B. Maple, J. Wittig, Kang Soo Kim, Phys. Rev. Lett. 23, 1375 (1969).https://doi.org/PRLTAO
17. A. C. Lawson, J. Less Common Metals 23, 103 (1971).
18. M. C. Krupka, A. L. Giorgi, N. H. Krikorian, E. G. Szklarz, J. Less Common Metals 19, 113 (1969).
19. A. S. Cooper, E. Corenzwit, L. D. Longinotti, B. T. Matthias, W. H. Zachariasen, Proc. Natl. Acad. Sci. US 67, 313 (1970).
20. B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens, J. P. Maita, Science 156, 645 (1967).https://doi.org/SCIEAS
21. S. Foner, E. J. McNiffJr, B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, Phys. Lett. 31A, 349 (1970).
22. B. T. Matthias, E. Corenzwit, A. S. Cooper, L. D. Longinotti, Proc. Natl. Acad. Sci. US 68, 56 (1971).
23. A. L. Giorgi, E. G. Szkarlz, E. K. Storms, Allen L. Bowman, B. T. Matthias, Phys. Rev. 125, 837 (1962).https://doi.org/PHRVAO
24. W. A. Little, “Possibility of Synthesizing Organic Superconductors,” Phys. Rev. 134, A1416 (1964).
25. B. T. Matthias, “Superconductivity versus Ferroelectricity,” Mat. Res. Bull. 5, 665 (1970); https://doi.org/MRBUAC
L. I. Buravov, M. L. Khidekel, I. F. Shchegolev, E. B. Yagubskii, “Superconductivity and Dielectric Constant of Highly Conductive Complexes of Tetracyanoquinodiemethane (TCQM),” JEPT Letters 12, 90 (1970).26. R. H. Parmenter, “High‐Current Superconductivity,” Phys. Rev. 116, 1390 (1959).https://doi.org/PHRVAO
27. W. L. McMillan, “Transition Temperature of Strong‐Coupled Superconductors,” Phys. Rev. 167, 331 (1968).https://doi.org/PHRVAO
28. V. I. Ginzburg, “On Surface Superconductivity,” Zh. Eksp. Teor. Fiz. 47, 2318 (1964)
V. I. Ginzburg, Sov. Phys.‐JETP 20, 1549 (1965); https://doi.org/ZETFA7
V. I. Ginzburg, “Problem of High Temperature Superconductivity I,” Usp. Fiz. Nauk 95, 91 (1968); https://doi.org/UFNAAG
V. I. Ginzburg, “Problem of High Temperature Superconductivity II,” Usp. Fiz. Nauk 101, 185 (1970)
V. I. Ginzburg, Soviet Physics Uspekhi 13, 335 (1970)
Proceedings of International Conference on the Science of Superconductivity, Physica (in press);
Proceedings of the International Symposium on the Physical and Chemical Problems of Organic Superconductors (in press).29. J. P. Hurault, J. Phys. Chem. Solids 29, 1765 (1968).https://doi.org/JPCSAW
30. H. Frölich, Phys. Rev. 79, 845 (1950); https://doi.org/PHRVAO
J. Bardeen, Phys. Rev. 80, 567 (1950); https://doi.org/PHRVAO
G. Wentzel, Phys. Rev. 83, 168 (1951); https://doi.org/PHRVAO
W. Kohn, Vachaspati, Phys. Rev. 83, 462 (1951).https://doi.org/PHRVAO
More about the Authors
Bernd T. Matthias. University of California, San Diego, and Bell Telephone Laboratories, Murray Hill, N.J..