Discover
/
Article

The search for high‐temperature superconductors

AUG 01, 1971
Although superconductivity at room temperature will always remain a pipedream, temperatures as high as 25–30 K are a realistic possibility and will trigger a technological revolution.

DOI: 10.1063/1.3022880

Bernd T. Matthias

Since 1911 superconductivity at room temperature has been the dream of scientists and science‐fiction writers alike. Unfortunately for superconductivity, the boundary between these two dream worlds has become totally blurred during the last decade. Still, today, superconductivity at room temperature together with controlled thermonuclear fusion are often mentioned as the two most important and crucial problems in physics relevant to the needs of society. Controlled fusion has now become a distinct possibility, and its progress over the last twenty years has covered many orders of magnitude. During this same time, superconducting transition temperatures have expanded from a range of 0.4 K to 16 K to a range stretching from 0.0002 K to 21 K. If this upper limit could be further increased, not by another order of magnitude, but by a factor of as little as 1.2, or as large as 1.5, superconductivity, while still far from room temperature, would revolutionize our technology. This revolution would encompass electric power transmission, electric motors, high‐field electromagnets, and the metallurgy of magnetic suspensions as a whole. In this article I will explain why I believe that this factor of 1.5 is a distinct possibility. I will also explain why room‐temperature superconductivity (regardless of a thousand statements by theorists and an equal number of theories) is—in my opinion—pure science fiction.

References

  1. 1. A. C. Mota, P. M. Brewster, A. C. Lawson, R. W. Fitzgerald, J. H. Bishop, Phys. Lett. 34A, 160 (1971).

  2. 2. G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. HullJr, H. L. Luo, B. T. Matthias, W. H. Zachariasen, “Superconductivity of Nb3(Al‐Ge) Above 20.5 K),” Proc. Natl. Acad. Sci. US 61, 621 (1968).

  3. 3. Intermetallic Compounds, (J. H. Westbrook, ed) Wiley, New York (1967);
    “Progress in Cryogenics,” Vol. IV, pages 160–231, Heywood, London (1964);
    National Bureau of Standards Technical Note No. 482. US Department of Commerce (1969).

  4. 4. B. T. Matthias, J. L. Olsen, Phys. Lett. 13, 202 (1964).https://doi.org/PHLTAM

  5. 5. T. R. R. McDonald, E. Gregory, G. S. Barberich, D. B. McWhan, T. H. Geballe, J. W. HullJr, Phys. Lett. 14, 16 (1965).https://doi.org/PHLTAM

  6. 6. B. T. Matthias, Physics of Solids at High Pressures, (C. T. Tomizuka, R. M. Emrick, eds.) Academic, New York (1965), page 225.

  7. 7. J. Wittig, Phys. Rev. Lett. 15, 159 (1965).https://doi.org/PRLTAO

  8. 8. J. Wittig, Z. Physik 195, 215 (1966).https://doi.org/ZEPYAA

  9. 9. I. V. Berman, N. B. Brandt, JETP Letters 10, 55 (1969).https://doi.org/JTPLA2

  10. 10. J. Wittig, B. T. Matthias, Science 160, 994 (1968).https://doi.org/SCIEAS

  11. 11. J. Wittig, Phys. Rev. Lett. 21, 1250 (1968).https://doi.org/PRLTAO

  12. 12. J. Wittig, B. T. Matthias, Phys. Rev. Lett. 22, 634 (1969).https://doi.org/PRLTAO

  13. 13. J. Wittig, Phys. Rev. Lett. 24, 812 (1970).https://doi.org/PRLTAO

  14. 14. “Superconductivity,” (A Summary Account of the International Superconductivity Conference at Colgate University, August 26–29) physics today, February 1964, page 31.

  15. 15. N. B. Brandt, N. I. Ginzburg, Scientific American, April 1971, page 83.

  16. 16. M. B. Maple, J. Wittig, Kang Soo Kim, Phys. Rev. Lett. 23, 1375 (1969).https://doi.org/PRLTAO

  17. 17. A. C. Lawson, J. Less Common Metals 23, 103 (1971).

  18. 18. M. C. Krupka, A. L. Giorgi, N. H. Krikorian, E. G. Szklarz, J. Less Common Metals 19, 113 (1969).

  19. 19. A. S. Cooper, E. Corenzwit, L. D. Longinotti, B. T. Matthias, W. H. Zachariasen, Proc. Natl. Acad. Sci. US 67, 313 (1970).

  20. 20. B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens, J. P. Maita, Science 156, 645 (1967).https://doi.org/SCIEAS

  21. 21. S. Foner, E. J. McNiffJr, B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, Phys. Lett. 31A, 349 (1970).

  22. 22. B. T. Matthias, E. Corenzwit, A. S. Cooper, L. D. Longinotti, Proc. Natl. Acad. Sci. US 68, 56 (1971).

  23. 23. A. L. Giorgi, E. G. Szkarlz, E. K. Storms, Allen L. Bowman, B. T. Matthias, Phys. Rev. 125, 837 (1962).https://doi.org/PHRVAO

  24. 24. W. A. Little, “Possibility of Synthesizing Organic Superconductors,” Phys. Rev. 134, A1416 (1964).

  25. 25. B. T. Matthias, “Superconductivity versus Ferroelectricity,” Mat. Res. Bull. 5, 665 (1970); https://doi.org/MRBUAC
    L. I. Buravov, M. L. Khidekel, I. F. Shchegolev, E. B. Yagubskii, “Superconductivity and Dielectric Constant of Highly Conductive Complexes of Tetracyanoquinodiemethane (TCQM),” JEPT Letters 12, 90 (1970).

  26. 26. R. H. Parmenter, “High‐Current Superconductivity,” Phys. Rev. 116, 1390 (1959).https://doi.org/PHRVAO

  27. 27. W. L. McMillan, “Transition Temperature of Strong‐Coupled Superconductors,” Phys. Rev. 167, 331 (1968).https://doi.org/PHRVAO

  28. 28. V. I. Ginzburg, “On Surface Superconductivity,” Zh. Eksp. Teor. Fiz. 47, 2318 (1964)
    V. I. Ginzburg, Sov. Phys.‐JETP 20, 1549 (1965); https://doi.org/ZETFA7
    V. I. Ginzburg, “Problem of High Temperature Superconductivity I,” Usp. Fiz. Nauk 95, 91 (1968); https://doi.org/UFNAAG
    V. I. Ginzburg, “Problem of High Temperature Superconductivity II,” Usp. Fiz. Nauk 101, 185 (1970)
    V. I. Ginzburg, Soviet Physics Uspekhi 13, 335 (1970)
    Proceedings of International Conference on the Science of Superconductivity, Physica (in press);
    Proceedings of the International Symposium on the Physical and Chemical Problems of Organic Superconductors (in press).

  29. 29. J. P. Hurault, J. Phys. Chem. Solids 29, 1765 (1968).https://doi.org/JPCSAW

  30. 30. H. Frölich, Phys. Rev. 79, 845 (1950); https://doi.org/PHRVAO
    J. Bardeen, Phys. Rev. 80, 567 (1950); https://doi.org/PHRVAO
    G. Wentzel, Phys. Rev. 83, 168 (1951); https://doi.org/PHRVAO
    W. Kohn, Vachaspati, Phys. Rev. 83, 462 (1951).https://doi.org/PHRVAO

More about the Authors

Bernd T. Matthias. University of California, San Diego, and Bell Telephone Laboratories, Murray Hill, N.J..

This Content Appeared In
pt-cover_1971_08.jpeg

Volume 24, Number 8

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.