Discover
/
Article

The Primary Steps of Photosynthesis

FEB 01, 1994
The two important initial steps of photosynthesis—electron transfer and energy transfer—occur with great speed and efficiency. New techniques in laser optics and genetic engineering are helping us to understand why.
Graham R. Fleming
Rienk van Grondelle

Photosynthesis, the process by which plants convert solar energy into chemical energy, results in about 10 billion tons of carbon entering the biosphere annually as carbohydrate—equivalent to about eight times mankind’s energy consumption in 1990. The apparatus used by plants to perform this conversion is both complex and highly efficient. Two initial steps of photosynthesis—energy transfer and electron transfer—are essential to its efficiency: Molecules of the light‐harvesting system transfer electronic excitation energy to special chlorophyll molecules, whose role is to initiate the directional transfer of electrons across a biological membrane; the electron transfer, which takes place in a pigment‐protein complex called the reaction center, then creates a potential difference that drives the subsequent biochemical reactions that store the energy. (Higher plants use two different reaction centers, called photosystems I and II, while purple bacteria make do with a single reaction center. The difference is that the bacteria do not generate oxygen in the photosynthetic process.) Both the elementary energy transfer and the primary electron transfer are ultrafast (occurring between 10−13 and 10−12 seconds), leading to the trapping of excitation energy at the reaction center (on a 100‐picosecond timescale) and subsequent electron transfer in about 3 picoseconds with almost 100% quantum yield.

This article is only available in PDF format

References

  1. 1. J. Deisenhofer, H. Michel, EMBO Journal 8, 2149 (1989).

  2. 2. E. C. Kellogg, S. Kolaczkowski, M. R. Waseliewski, D. Tiede, Photosynth. Res. 72, 47 (1989).

  3. 3. T. Middendorf, L. Mazzola, D. Gaul, C. Schenck, S. Boxer, J. Phys. Chem. 95, 10142 (1991). https://doi.org/JPCHAX
    N. Raja, S. Reddy, S. V. Kolaczkowski, G. J. Small, J. Phys. Chem. 97, 6934 (1993).https://doi.org/JPCHAX

  4. 4. A. P. Schreve, N. J. Cherepy, S. Franzen, S. G. Boxer, R. A. Mathies, Proc. Natl. Acad. Sci. U.S.A. 88, 11207 (1991).https://doi.org/PNASA6

  5. 5. Y. Won, R. A. Friesner, J. Phys. Chem. 92, 2208 (1988).https://doi.org/JPCHAX

  6. 6. R. A. Marcus, R. Almeida, J. Phys. Chem. 91, 2973; 2978 (1990).
    Y. Hu, S. Mukamel, J. Chem. Phys. 94, 6973 (1989). https://doi.org/JCPSA6
    J. S. Joseph, W. A. Bialek, J. Phys. Chem. 97, 3245 (1993).https://doi.org/JPCHAX

  7. 7. M. Bixon, J. Jortner, M. E. Michel‐Byerle, Biochim. Biophys. Acta 1056, 301 (1991).https://doi.org/BBACAQ

  8. 8. K. Schulten, M. Tesch, Chem. Phys. 158, 421 (1991). https://doi.org/CMPHC2
    A. Warshel, W. W. Parson, Annu. Rev. Phys. Chem. 42, 279 (1991).
    N. Marchi, J. N. Gehlen, D. Chandler, M. Newton, J. Amer. Chem. Soc. 115, 4178 (1993).https://doi.org/JACSAT

  9. 9. W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterheldt, H. Scheer, H. U. Stilz, W. Zinth, Chem. Phys. Lett. 160, 1 (1989); https://doi.org/CHPLBC
    W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterheldt, H. Scheer, H. U. Stilz, W. Zinth, Proc. Natl. Acad. Sci. 87, 5168 (1990).

  10. 10. C. Kirmaier, D. Holten, Biochem. 30, 609 (1991).

  11. 11. J. Breton, J.‐L. Martin, J. C. Lambry, S. J. Robles, D. C. Youvan, in Reaction Centers of Photosynthetic Bacteria, M. E. Michel‐Byerle, ed., Springer‐Verlag, New York (1990), p. 293.

  12. 12. C. K. Chan, T. J. DiMagno, L. X. Q. Chen, J. R. Norris, G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 88, 11202 (1991).https://doi.org/PNASA6
    Y. Jia, T. J. DiMagno, C. K. Chan, Z. Wang, M. Du, D. K. Hanson, M. Schiffer, J. R. Norris, G. R. Fleming, M. S. Popov, J. Phys. Chem. 97, 13180 (1993).

  13. 13. M. H. Vos, F. Rappaport, J.‐C. Lambry, J. Breton, J.‐L. Martin, Nature 363, 320 (1993).https://doi.org/NATUAS

  14. 14. S. S. Skourtis, A. J. da Silva, W. Bialek, J. N. Onuchic, J. Phys. Chem. 96, 8034 (1992).https://doi.org/JPCHAX
    J. M. Jean, R. A. Friesner, G. R. Fleming, J. Chem. Phys. 96, 5827 (1992).https://doi.org/JCPSA6

  15. 15. S. G. Johnson, G. J. Small, J. Phys. Chem. 95, 471 (1991).https://doi.org/JPCHAX

  16. 16. A. Y. Borisov, A. Freiberg, V. Godik, K. K. Rebane, K. E. Timpmann, Biochim. Biophys. Acta 807, 221 (1985).https://doi.org/BBACAQ

  17. 17. V. Sundström, R. van Grondelle, H. Bergström, E. Akesson, T. Gillbro, Biochim. Biophys. Acta 851, 431 (1986).https://doi.org/BBACAQ

  18. 18. T. G. Owens, S. P. Webb, L. Mets, R. S. Alberte, G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 84, 1532 (1987). https://doi.org/PNASA6
    G. H. Schatz, H. Brock, A. R. Holzwarth, Proc. Natl. Acad. Sci. USA 84, 8414 (1987).

  19. 19. J. G. C. Bakker, R. van Grondelle, W. T. F. den Hollander, Biochim. Biophys. Acta 725, 508 (1983). https://doi.org/BBACAQ
    L. Valkunas, S. Kudzmauskas, V. Liuolia, Sov. Phys. Coll. 26, 1 (1986).https://doi.org/SPCODK

  20. 20. R. E. Fenna, B. W. Matthews, Nature 258, 573 (1975).https://doi.org/NATUAS

  21. 21. F. van Mourik, R. R. Verwijst, J. M. Mulder, R. van Grondelle, J. Lumin. 53, 499 (1992).

  22. 22. N. Krauss, W. Hinrichs, I. Witt, P. Fromme, W. Pritzkow, Z. Dauter, C. Betzel, K. S. Wilson, H. T. Witt, W. Saenger, Nature 361, 326 (1993).

  23. 23. W. Köhlbrandt, D. N. Wang, Nature 350, 326 (1991).https://doi.org/NATUAS

  24. 24. M. Du, X. Xie, Y. Jia, L. Mets, G. R. Fleming, Chem. Phvs. Lett. 201, 535 (1993).

More about the authors

Graham R. Fleming, University of Chicago.

Rienk van Grondelle, Free University of Amsterdam, Netherlands.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1994_02.jpeg

Volume 47, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.