Discover
/
Article

Superconductor Images of Electron Devide Physics

FEB 01, 1990
Ultrafast semiconductor devices form the building blocks of supercomputers. Supercomputers, in turn, are essential for understanding the complex physical phenomena that underlie the devices and for optimizing device performance.
Karl Hess

A deep, quantitative understanding of the behavior of electronic devices is necessary to ensure that the circuits made by integrating those devices will have the desired characteristics. Such understanding of the device behavior has become all the more important as the devices have become smaller and many more of them are packed in smaller chips at ever higher densities. Supercomputers have been increasingly used to simulate small devices in recent years. There are several reasons for this development. First, boundary conditions become important as the device size decreases, and this makes the task of simulating the devices more complex. Second, several characteristic quantities that determine the behavior of a device, such as carrier concentration and velocity, do not vary gradually. Third and most important, boundary conditions generally lead to the quantization of physical quantities, and many novel quantization effects become significant and observable in nanometer structures.

This article is only available in PDF format

References

  1. 1. For a broad overview, see K. Hess, Advanced Theory of Semiconductor Devices, Prentice Hall, Englewood Cliffs, NJ (1988);
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer‐Verlag, New York (1984);
    D. K. Ferry, J. R. Barker, C. Jacoboni, eds., Physics of Nonlinear Transport in Semiconductors, Plenum, New York (1980).

  2. 2. See reviews in F. Capasso, G. Margaritondo, eds., Heterojunction Band Discontinuities: Physics and Device Applications, North‐Holland, Amsterdam (1987);
    H. L. Grubin, K. Hess, G. J. Iafrate, D. K. Ferry, eds., The Physics of Submicron Structures, Plenum, New York (1982).

  3. 3. H. Shichijo, K. Hess, Phys. Rev. B 23, 4197 (1981).https://doi.org/PRBMDO

  4. 4. M. V. Fischetti, S. E. Laux, Phys. Rev. B 38, 9721 (1988).https://doi.org/PRBMDO

  5. 5. C. V. Shank, R. L. Fork, R. F. Leheny, J. Shah, Phys. Rev. Lett. 42, 112 (1979). https://doi.org/PRLTAO
    C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983). https://doi.org/PRLTAO
    J. A. Kash, J. C. Tsang, J. M. Hvam, Phys. Rev. Lett. 54, 2151 (1985). https://doi.org/PRLTAO
    W. Z. Lin, J. G. Fujimoto, E. P. Ippen, R. A. Logan, Appl. Phys. Lett. 50, 124 (1987).https://doi.org/APPLAB

  6. 6. C. J. Stanton, D. W. Bailey, K. Hess, IEEE J. Quantum Electron. 24, 1614 (1988).https://doi.org/IEJQA7

  7. 7. M. Heiblum, M. I. Nathan, D. C. Thomas, C. M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985). https://doi.org/PRLTAO
    For a review, see K. Hess, G. J. Iafrate, Proc IEEE 76, 519 (1988).https://doi.org/IEEPAD

  8. 8. F. Capasso, Science 235, 172 (1987).https://doi.org/SCIEAS

  9. 9. R. Dingle, H. L. Störmer, A. C. Gossard, W. Wiegman, Appl. Phys. Lett. 33, 665 (1978).https://doi.org/APPLAB

  10. 10. T. Mimura, S. Hiyamizu, K. Joshin, K. Hikosaka, Jpn. J. Appl. Phys. 20, L317 (1989).https://doi.org/JJPYA5

  11. 11. J. L. Larson, I. C. Kizilyalli, K. Hess, A. Sameh, D. J. Widiger, in “Large Scale Computational Device Modeling,” K. Hess, ed., report of the Coordinated Science Laboratory, University of Illinois (1986).

  12. 12. These effects have been experimentally demonstrated by the Illinois group: M. Keever, K. Hess, M. Ludowise, IEEE Electron Device Lett. 3, 297 (1982). https://doi.org/EDLEDZ
    M. Keever, H. Shichijo, K. Hess, S. Banerjee, L. Witkowski, H. Morkoc, B. G. Streetman, Appl. Phys. Lett. 38, 36 (1981). https://doi.org/APPLAB
    The effect of negative differential resistance due to electron transfer in real space has been independently predicted three times: For multiple heterolayers, by Z. S. Gribnikov, Fiz. Tekh. Poluprovodn. 6, 7, 1380 (1972) https://doi.org/FTPPA4
    [Z. S. Gribnikov, Sov Phys‐Semicond 6, 1204 (1973)]; https://doi.org/SPSEAX
    for various heterolayer geometries, by K. Hess, H. Morkoc, H. Shichijo, B. G. Streetman, Appl. Phys. Lett. 35, 469 (1979); https://doi.org/APPLAB
    for homojunctions (ion‐implanted silicon) by F. Pacha, F. Paschke, Electron. Commun. 32, 235 (1978).

  13. 13. A. Kastalsky, S. Luryi, IEEE Electron Device Lett. 4, 334, (1983). https://doi.org/EDLEDZ
    S. Luryi, A. Kastalsky, A. C. Gossard, R. H. Hendel, IEEE Trans. Electron Devices 31, 832 (1984).https://doi.org/IETDAI

  14. 14. F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54, 4, 350 (1989).https://doi.org/APPLAB

More about the Authors

Karl Hess. University of Illinois, Urbana‐Champaign.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1990_02.jpeg

Volume 43, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.