Discover
/
Article

Studies with crossed laser and molecular beams

NOV 01, 1980
Experiments with intersecting beams of photons and molecules can give detailed information on the dynamics of chemical reactions at the level of individual atoms and molecules.
Yuan T. Lee
Y. Ron Shen

During the last twenty years sophisticated microscopic experimental techniques and large‐scale theoretical computations have significantly enhanced our understanding of the detailed dynamics of chemical reactions. The development of computer codes to perform lengthy and detailed computations has made it possible to clarify the connection between the first principles of quantum chemistry and the behavior of substances in the real world. Modern spectroscopy, laser technology and molecular‐beam methods allow us to observe chemical reactions on the atomic and molecular levels in great detail.

This article is only available in PDF format

References

  1. 1. R. D. Levine, R. B. Bernstein, Molecular Reaction Dynamics, Oxford U.P., Oxford, 1974.

  2. 2. G. E. Bush, K. R. Wilson, J. Chem. Phys. 56, 3638 (1972).https://doi.org/JCPSA6

  3. 3. M. J. Redmon, R. E. Wyatt, Chem. Phys. Lett. 63, 209 (1979).https://doi.org/CHPLBC

  4. 4. See, for example: V. S. Letokhov, PHYSICS TODAY, May 1977, page 23.
    N. Bloembergen, E. Yablonovitch, PHYSICS TODAY, May 1978, page 23.
    Multiphoton Excitation and Dissociation of Polyatomic Molecules, C. D. Cantrell, ed., Springer, New York (to be published).

  5. 5. More details can be found in the following review articles: E. R. Grant, P. A. Schulz, Aa. S. Sudbo/, M. J. Coggiola, Y. T. Lee, Y. R. Shen, in Laser Spectroscopy III, J. L. Hall, J. L. Carlson, eds., Springer, New York (1977), page 94.
    Aa. S. Sudbo/, P. A. Schulz, D. J. Krajnovich, Y. R. Shen, Y. T. Lee, in Advances in Laser Chemistry, A. H. Zewail, ed., Springer, New York, (1978), page 308.
    P. A. Schulz, Aa. S. Sudbo/, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Ann. Rev. Phys. Chem. 30, 379 (1979).https://doi.org/ARPLAP

  6. 6. D. M. Larsen, N. Bloembergen, Optics Commun. 17, 254 (1976).
    R. V. Ambartzumian, N. P. Furzikov, Yu. A. Gorokhov, V. S. Letokhov, G. M. Makarov, A. A. Puretzki, JETP Lett. 23, 217 (1976); https://doi.org/JTPLA2
    R. V. Ambartzumian, N. P. Furzikov, Yu. A. Gorokhov, V. S. Letokhov, G. M. Makarov, A. A. Puretzki, Optics Commun. 18, 517 (1976).

  7. 7. E. R. Grant, P. A. Schulz, Aa. S. Sudbo/, Y. R. Shen, Y. T. Lee, Phys. Rev. Lett. 40, 115 (1978).https://doi.org/PRLTAO

  8. 8. See, for example, P. J. Robinson, K. A. Holbrook, Unimolecular Reactions Wiley, New York (1972).

  9. 9. J. G. Black, E. Yablonovitch, N. Bloembergen, S. Mukamel, Phys. Rev. Lett. 38, 1131 (1977). https://doi.org/PRLTAO
    J. L. Lyman, S. D. Rockwood, J. Appl. Phys. 47, 595 (1976). https://doi.org/JAPIAU
    J. G. Black, P. Kolodner, M. J. Schultz, E. Yablonovitch, N. Bloembergen, Phys. Rev. A19, 704 (1979).

  10. 10. P. A. Schulz, Aa. S. Sudbo/, E. R. Grant, Y. R. Shen, Y. T. Lee, J. Chem. Phys. 72, 4985 (1980).https://doi.org/JCPSA6

  11. 11. T. E. Gough, R. E. Miller, G. Scoles, J. Chem. Phys. 69, 1588 (1978); https://doi.org/JCPSA6
    H. S. Kwok, D. J. Krajnovich, M. Vernon, Y. R. Shen, Y. T. Lee, XIth International Quantum Electronics Conference (Boston, June 1980) paper D‐5.

  12. 12. See, for example, J. E. Kenny, K. E. Johnson, W. Sharfin, D. H. Levy, J. Chem. Phys. 72, 1109 (1980), and references therein.https://doi.org/JCPSA6

More about the Authors

Yuan T. Lee. University of California, Berkeley.

Y. Ron Shen. University of California, Berkeley.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1980_11.jpeg

Volume 33, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.