Discover
/
Article

Stimulated desorption from surfaces

SEP 01, 1984
New techniques for probing the complex electronic excitations that expel atoms and ions from surfaces are putting new demands on our picture of the surface bond.
Michael L. Knotek

After spending years wondering how the surface bond is formed, we are now wondering just as hard how it can be broken. Investigation of the latter problem—possibly the more challenging of the two—is leading to new insight into chemical bonding and the dynamical processes important in chemical kinetics. In this article I discuss a very powerful technique that surface scientists are using in this research: stimulated desorption, the removal of atoms and molecules from surfaces by low‐energy ionizing radiation. Concepts from the field of stimulated desorption are already finding their way into other areas. For example, we find that we can offer new insight into the problem of beam damage in electron microscopy and that we can contribute to the very important technological area of plasma processing of surfaces. Insights into chemistry and into the general problem of radiation‐induced damage could affect our thinking in areas ranging from radiation treatment in medicine to the interaction of radiation with matter in space.

This article is only available in PDF format

References

  1. 1. Proceedings of the First International Workshop on Desorption Induced by Electronic Transitions, N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey, eds., Springer‐Verlag, New York (1983).

  2. 2. P. Feulner, R. Treichler, D. Menzel, Phys. Rev. B 24, 7427 (1981).https://doi.org/PRBMDO

  3. 3. R. H. Stulen, T. E. Felter, R. A. Rosenberg, M. L. Knotek, G. Loubriel, C. C. Parks, Phys. Rev. B 25, 6530 (1982).https://doi.org/PRBMDO

  4. 4. D. Menzel, R. Gomer, J. Chem. Phys. 41, 3311 (1964); https://doi.org/JCPSA6
    P. A. Redhead, Can. J. Phys. 42, 886 (1964).https://doi.org/CJPHAD

  5. 5. M. L. Knotek, P. J. Feibelman, Phys. Rev. Lett. 40, 964 (1979); https://doi.org/PRLTAO
    P. J. Feibelman, M. L. Knotek, Phys. Rev. B 18, 6531 (1978); https://doi.org/PLRBAQ
    M. L. Knotek, P. J. Feibelman, Surf. Sci. 90, 78 (1979).https://doi.org/SUSCAS

  6. 6. M. L. Knotek, V. O. Jones, V. Rehn, Phys. Rev. Lett. 43, 300 (1979); https://doi.org/PRLTAO
    M. L. Knotek, V. O. Jones, V. Rehn, Surf. Sci. 102, 566 (1981); https://doi.org/SUSCAS
    M. L. Knotek, R. H. Stulen, G. M. Loubriel, V. Rehn, R. Rosenberg, C. C. Parks, Surface Sci. 133, 291 (1983).https://doi.org/SUSCAS

  7. 7. R. Franchy, D. Menzel, Phys. Rev. Lett. 43, 865 (1979).https://doi.org/PRLTAO

  8. 8. T. E. Madey, R. L. Stockbauer, J. F. van der Veen, D. E. Eastman, Phys. Rev. Lett. 45, 187 (1980).https://doi.org/PRLTAO

  9. 9. D. P. Woodruff, M. M. Traum, H. H. Farrell, N. V. Smith, Phys. Rev. B 21, 5642 (1980).https://doi.org/PRBMDO

  10. 10. R. Jaeger, J. Feldhaus, J. Haase, J. Stöhr, Z. Hussain, D. Menzel, D. Norman, Phys. Rev. Lett. 45, 1870 (1980), https://doi.org/PRLTAO
    R. Jaeger, J. Feldhaus, J. Haase, J. Stöhr, Z. Hussain, D. Menzel, D. Norman, 49, 1264 (1982).https://doi.org/PRLTAO , Phys. Rev. Lett.

  11. 11. R. Jaeger, J. Stöhr, T. Kendelewicz, Phys. Rev. B 28, 7145 (1983); https://doi.org/PRBMDO
    R. A. Rosenberg, P. R. La Roe, V. Rehn, J. Stöhr, R. Jaeger, C. C. Parks, Phys. Rev. B 28, 3026 (1983).https://doi.org/PRBMDO

  12. 12. T. A. Carlson, M. O. Krause, J. Chem. Phys. 56, 3206 (1972).https://doi.org/JCPSA6

  13. 13. P. J. Feibelman, Surf. Sci. 102, L51 (1981); https://doi.org/SUSCAS
    D. R. Jennison, J. A. Kelber, R. R. Rye, Phys. Rev. B 25, 1384 (1982); https://doi.org/PRBMDO
    D. E. Ramaker, C. T. White, J. S. Murday, J. Vac. Sci. Technol., 18(3), 748 (1981).https://doi.org/JVSTAL

  14. 14. R. R. Rye, D. R. Jennison and J. E. Houston, J. Chem. Phys. 73, 4867 (1980).https://doi.org/JCPSA6

  15. 15. M. Cini, Solid State Commun. 20, 605 (1976); https://doi.org/SSCOA4
    G. A. Sawatsky, Phys. Rev. Lett. 39, 504 (1977).https://doi.org/PRLTAO

  16. 16. H. H. Madden, D. R. Jennison, M. M. Traum, G. Margaritondo, N. G. Stoffel, Phys. Rev. B26, 896 (1982).https://doi.org/PRBMDO

  17. 17. C. C. Parks, D. A. Shirley, Z. Hussain, M. L. Knotek, G. M. Loubriel, R. A. Rosenberg, Phys. Rev. B 28, 4793 (1983).https://doi.org/PRBMDO

  18. 18. R. Jaeger, J. Stöhr, R. Treichler, K. Baberschke, Phys. Rev. Lett. 47, 1300 (1981).https://doi.org/PRLTAO

  19. 19. J. J. Czyzewski, T. E. Madey, J. T. YatesJr., Phys. Rev. Lett. 32, 777 (1974); https://doi.org/PRLTAO
    F. T. Netzr, T. E. Madey, Phys. Rev. Lett. 47, 928 (1981).https://doi.org/PRLTAO

  20. 20. H. Niehus, Appl. of Surf. Science 13, 292 (1982); https://doi.org/ASUSDD
    H. Niehus, Surf. Sci. 87, 561 (1979).https://doi.org/SUSCAS

More about the authors

Michael L. Knotek, Sandia National Laboratories, Albuquerque, New Mexico.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1984_09.jpeg

Volume 37, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.