Discover
/
Article

Space inversion, time reversal and particle‐antiparticle conjugation

MAR 01, 1966
As we expand our observation, we extend our concepts. Thus the simple symmetries that once seemed self‐evident are no longer taken for granted. Out of studies of different kinds of interactions we are learning that symmetry in nature is some complex mixture of changing plus into minus, running time backward and turning things inside out.

DOI: 10.1063/1.3048099

T. D. Lee

THE MORE WE LEARN about symmetry operations—space inversion, time reversal and particle‐antiparticle conjugation—the less we seem to understand them. At present, although still very little is known about the true nature of these discrete symmetries, we have, unfortunately, already reached the unhappy state of having lost most of our previous understanding. Let us, therefore, review the gradual evolution of our past concepts of these discrete symmetry operations.

References

  1. 1. E. P. Wigner, Z. Physik 43, 624 (1927); https://doi.org/ZEPYAA
    E. P. Wigner, Gött. Nach. Math. Naturw. Kl. 546 (1932).

  2. 2. T. D. Lee, C. N. Yang, Phys. Rev. 104, 254 (1956).https://doi.org/PHRVAO

  3. 3. T. D. Lee, R. Oehme, C. N. Yang, Phys. Rev. 106, 340 (1957).https://doi.org/PHRVAO

  4. 4. C. S. Wu., E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev. 105, 1413 (1957).https://doi.org/PHRVAO

  5. 5. R. L. Garwin, L. M. Lederman, M. Weinrich, Phys. Rev. 105, 1415 (1957); https://doi.org/PHRVAO
    J. I. Friedman, V. L. Telegdi, Phys. Rev. 105, 1681 (1957).https://doi.org/PHRVAO

  6. 6. F. Boehm, E. Kankeleit, Calt‐63‐13 (preprint);
    Yu. G. Abov, P. A. Krupchitsky, Yu. A. Oratovsky, Comptes Rendus du Cong. Intern. Phys. Nucl., (Paris, 1964);
    L. Grodzins, F. Genovese, Phys. Rev. 121, 228 (1961); https://doi.org/PHRVAO
    R. E. Segel et al., Phys. Rev. 123, 1382 (1961); https://doi.org/PHRVAO
    D. E. Alburger et al., Phil. Mag. 6, 171 (1961); https://doi.org/PHMAA4
    R. Haas, L. B. Leipuner, R. K. Adair, Phys. Rev. 116, 1221 (1959); https://doi.org/PHRVAO
    F. Boehm, U. Hauser, Nuclear Physics 14, 615 (1959); https://doi.org/NUPHA7
    D. A. Bromley et al., Phys. Rev. 114, 758 (1959).https://doi.org/PHRVAO

  7. 7. T. D.Lee, Phys. Rev. 140, B959 (1965); https://doi.org/PHRVAO
    article in Proc. Oxford International Conf. Elementary Particles, The Rutherford High Energy Laboratory (1965).

  8. 8. L. Rosen, J. E. BrolleyJr., Phys. Rev. Letters 2, 98 (1959); https://doi.org/PRLTAO
    D. Bodansky et al., Phys. Rev. Letters 2, 101 (1959); https://doi.org/PRLTAO
    A. Abashian, E. M. Hafner, Phys. Rev. Letters 1, 255 (1958); https://doi.org/PRLTAO
    C. F. Hwang et al., Phys. Rev. 119, 352 (1960).https://doi.org/PHRVAO

  9. 9. J. W. Cronin, O. E. Overseth, in Proc. International Conf. High Energy Physics, CERN, 453 (1962).

  10. 10. M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Rings, V. L. Telegdi, Phys. Rev. Letters 1, 324 (1958).https://doi.org/PRLTAO

  11. 11. T. D. Lee, pp. 5–16 of Preludes in Theoretical Physics (in Honor of V. F. Weisskopf) (A. De‐Shalit. H. Feshbach, L. Van Hove, eds.), North Holland Publishing Co., Amsterdam (1966).

  12. 12. W. Pauli, Niels Bohr and the Development of Physics, Pergamon Press, London (1955);
    J. Schwinger, Phys. Rev. 91, 720, 723 (1953); https://doi.org/PHRVAO
    J. Schwinger, 94, 1366 (1953); https://doi.org/PHRVAO , Phys. Rev.
    G. Lüders, Kgl. Danske Videnskab. Selskab. Mat‐fys. Medd. 28, No. 5 (1954).

  13. 13. B. Aubert et al., Phys. Letters 10, 215 (1964); https://doi.org/PHLTAM
    U. Camerini et al., Phys. Rev. 128, 362 (1962); https://doi.org/PHRVAO
    J. H. Christenson et al., at Conf. Fundamental Aspects Weak Interactions, Brookhaven National Laboratory (1963);
    J. H. Christenson, Tech. Report 34, Princeton University (1964);
    V. L. Fitch et al., Phys. Rev. Letters 15, 73 (1965). https://doi.org/PRLTAO

  14. 14. R. A. Lundby, Phys. Rev. 125, 1686 (1962); https://doi.org/PHRVAO
    M. Eckhause, Carnegie Inst. Tech. Report 9286 (1962);
    F. J. M. Farley et al., in Proc. International Conf. High Energy Physics, Geneva (1962);
    M. A. Meyer et al., Nevis Report 114, Columbia University (1963).

  15. 15. J. Jakobson, A. Schulz, J. Steinberger, Phys. Rev. 81, 894 (1951); https://doi.org/PHRVAO
    R. P. Durbin, H. H. Loar, W. W. HavensJr., Phys. Rev. 88, 179 (1952); https://doi.org/PHRVAO
    H. L. Anderson et al., Phys. Rev. 119, 2050 (1960); https://doi.org/PHRVAO
    J. Ashkin et al., Nuovo Cimento 16, 490 (1960); https://doi.org/NUCIAD
    A. Barkas, A. Rosenfeld, Proc. International Conf. High Energy Physics, Rochester (1060).

  16. 16. P. NordinJr., Phys. Rev. 123, 2168 (1961); https://doi.org/PHRVAO
    B. Bhowmik et al., Nuovo Cimento 20, 857 (1961); https://doi.org/NUCIAD
    W. H. Barkas et al., Phys. Rev. 124, 1209 (1961); https://doi.org/PHRVAO
    A. M. Boyarski et al., Phys. Rev. 128, 2398 (1962); https://doi.org/PHRVAO
    F. Crawford, in Proc. International Conf. High Energy Physics, Rochester (1957).

  17. 17. C. Baltay, N. Barash, P. Franzini, N. Gelfand, L. Kirsch, G. Lütjcns, J. C. Severiens, J. Steinberger, D. Tycko, D. Zanello, Phys. Rev. Letters 15, 591 (1965).https://doi.org/PRLTAO

  18. 18. J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys. Rev. Letters 13, 138 (1964); https://doi.org/PRLTAO
    A. Abashian et al., Phys. Rev. Letters 13, 243 (1964). https://doi.org/PRLTAO

  19. 19. T. D. Lee, L. Wolfenstein, Phys. Rev. 138, B1490 (1965); https://doi.org/PHRVAO
    J. Prentki, M. Veltman, Phys. Letters 15, 88 (1965); https://doi.org/PHLTAM
    L. B. Okun (preprint).

  20. 20. J. Bernstein, G. Feinberg, T. D. Lee, Phys. Rev. 139, B1650 (1965); https://doi.org/PHRVAO
    see also S. Barshay, Phys. Letters 17, 78 (1965).https://doi.org/PHLTAM

  21. 21. (Of numerous papers on various possible ways to violate CstPst invariance in the weak interactions, we list but a few.) R. G. Sachs, Phys. Rev. Letters 13, 286 (1964); https://doi.org/PRLTAO
    R. G. Sachs, S. B. Treiman, Phys. Rev. Letters 8, 137 (1962); https://doi.org/PRLTAO
    N. Cabibbo, Phys. Rev. Letters 12, 137 (1964); https://doi.org/PRLTAO
    S. Glashow, Phys. Rev. Letters 14, 35 (1965); https://doi.org/PRLTAO
    L. Wolfenstein, Phys. Rev. Letters 15, 196 (1965). https://doi.org/PRLTAO
    See also F. Salzman, Phys. Letters 15, 91 (1965). https://doi.org/PHLTAM
    (The authors postulated an electric dipole moment for the hypothetical intermediate boson W± of the weak interaction).

  22. 22. L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964); https://doi.org/PRLTAO
    T. D. Lee, L. Wolfenstein, loc cit in ref. 19.

  23. 23. H. Weyl, The Theory of Groups and Quantum Mechanics (translation of the 2d edition of Gruppentheorie und Quantenmechanik) E. P. Dutton and Co. (1931).

More about the Authors

T. D. Lee. Columbia University.

This Content Appeared In
pt-cover_1966_03.jpeg

Volume 19, Number 3

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.