Space inversion, time reversal and particle‐antiparticle conjugation
MAR 01, 1966
As we expand our observation, we extend our concepts. Thus the simple symmetries that once seemed self‐evident are no longer taken for granted. Out of studies of different kinds of interactions we are learning that symmetry in nature is some complex mixture of changing plus into minus, running time backward and turning things inside out.
THE MORE WE LEARN about symmetry operations—space inversion, time reversal and particle‐antiparticle conjugation—the less we seem to understand them. At present, although still very little is known about the true nature of these discrete symmetries, we have, unfortunately, already reached the unhappy state of having lost most of our previous understanding. Let us, therefore, review the gradual evolution of our past concepts of these discrete symmetry operations.
This article is only available in PDF format
References
1. E. P. Wigner, Z. Physik 43, 624 (1927); https://doi.org/ZEPYAA E. P. Wigner, Gött. Nach. Math. Naturw. Kl. 546 (1932).
4. C. S. Wu., E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev. 105, 1413 (1957).https://doi.org/PHRVAO
5. R. L. Garwin, L. M. Lederman, M. Weinrich, Phys. Rev. 105, 1415 (1957); https://doi.org/PHRVAO J. I. Friedman, V. L. Telegdi, Phys. Rev. 105, 1681 (1957).https://doi.org/PHRVAO
6. F. Boehm, E. Kankeleit, Calt‐63‐13 (preprint); Yu. G. Abov, P. A. Krupchitsky, Yu. A. Oratovsky, Comptes Rendus du Cong. Intern. Phys. Nucl., (Paris, 1964); L. Grodzins, F. Genovese, Phys. Rev. 121, 228 (1961); https://doi.org/PHRVAO R. E. Segel et al., Phys. Rev. 123, 1382 (1961); https://doi.org/PHRVAO D. E. Alburger et al., Phil. Mag. 6, 171 (1961); https://doi.org/PHMAA4 R. Haas, L. B. Leipuner, R. K. Adair, Phys. Rev. 116, 1221 (1959); https://doi.org/PHRVAO F. Boehm, U. Hauser, Nuclear Physics 14, 615 (1959); https://doi.org/NUPHA7 D. A. Bromley et al., Phys. Rev. 114, 758 (1959).https://doi.org/PHRVAO
7. T. D.Lee, Phys. Rev. 140, B959 (1965); https://doi.org/PHRVAO article in Proc. Oxford International Conf. Elementary Particles, The Rutherford High Energy Laboratory (1965).
9. J. W. Cronin, O. E. Overseth, in Proc. International Conf. High Energy Physics, CERN, 453 (1962).
10. M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Rings, V. L. Telegdi, Phys. Rev. Letters 1, 324 (1958).https://doi.org/PRLTAO
11. T. D. Lee, pp. 5–16 of Preludes in Theoretical Physics (in Honor of V. F. Weisskopf) (A. De‐Shalit. H. Feshbach, L. Van Hove, eds.), North Holland Publishing Co., Amsterdam (1966).
12. W. Pauli, Niels Bohr and the Development of Physics, Pergamon Press, London (1955); J. Schwinger, Phys. Rev. 91, 720, 723 (1953); https://doi.org/PHRVAO J. Schwinger, 94, 1366 (1953); https://doi.org/PHRVAO, Phys. Rev. G. Lüders, Kgl. Danske Videnskab. Selskab. Mat‐fys. Medd. 28, No. 5 (1954).
13. B. Aubert et al., Phys. Letters 10, 215 (1964); https://doi.org/PHLTAM U. Camerini et al., Phys. Rev. 128, 362 (1962); https://doi.org/PHRVAO J. H. Christenson et al., at Conf. Fundamental Aspects Weak Interactions, Brookhaven National Laboratory (1963); J. H. Christenson, Tech. Report 34, Princeton University (1964); V. L. Fitch et al., Phys. Rev. Letters 15, 73 (1965). https://doi.org/PRLTAO
14. R. A. Lundby, Phys. Rev. 125, 1686 (1962); https://doi.org/PHRVAO M. Eckhause, Carnegie Inst. Tech. Report 9286 (1962); F. J. M. Farley et al., in Proc. International Conf. High Energy Physics, Geneva (1962); M. A. Meyer et al., Nevis Report 114, Columbia University (1963).
15. J. Jakobson, A. Schulz, J. Steinberger, Phys. Rev. 81, 894 (1951); https://doi.org/PHRVAO R. P. Durbin, H. H. Loar, W. W. HavensJr., Phys. Rev. 88, 179 (1952); https://doi.org/PHRVAO H. L. Anderson et al., Phys. Rev. 119, 2050 (1960); https://doi.org/PHRVAO J. Ashkin et al., Nuovo Cimento 16, 490 (1960); https://doi.org/NUCIAD A. Barkas, A. Rosenfeld, Proc. International Conf. High Energy Physics, Rochester (1060).
16. P. NordinJr., Phys. Rev. 123, 2168 (1961); https://doi.org/PHRVAO B. Bhowmik et al., Nuovo Cimento 20, 857 (1961); https://doi.org/NUCIAD W. H. Barkas et al., Phys. Rev. 124, 1209 (1961); https://doi.org/PHRVAO A. M. Boyarski et al., Phys. Rev. 128, 2398 (1962); https://doi.org/PHRVAO F. Crawford, in Proc. International Conf. High Energy Physics, Rochester (1957).
17. C. Baltay, N. Barash, P. Franzini, N. Gelfand, L. Kirsch, G. Lütjcns, J. C. Severiens, J. Steinberger, D. Tycko, D. Zanello, Phys. Rev. Letters 15, 591 (1965).https://doi.org/PRLTAO
18. J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys. Rev. Letters 13, 138 (1964); https://doi.org/PRLTAO A. Abashian et al., Phys. Rev. Letters 13, 243 (1964). https://doi.org/PRLTAO
19. T. D. Lee, L. Wolfenstein, Phys. Rev. 138, B1490 (1965); https://doi.org/PHRVAO J. Prentki, M. Veltman, Phys. Letters 15, 88 (1965); https://doi.org/PHLTAM L. B. Okun (preprint).
21. (Of numerous papers on various possible ways to violate CstPst invariance in the weak interactions, we list but a few.) R. G. Sachs, Phys. Rev. Letters 13, 286 (1964); https://doi.org/PRLTAO R. G. Sachs, S. B. Treiman, Phys. Rev. Letters 8, 137 (1962); https://doi.org/PRLTAO N. Cabibbo, Phys. Rev. Letters 12, 137 (1964); https://doi.org/PRLTAO S. Glashow, Phys. Rev. Letters 14, 35 (1965); https://doi.org/PRLTAO L. Wolfenstein, Phys. Rev. Letters 15, 196 (1965). https://doi.org/PRLTAO See also F. Salzman, Phys. Letters 15, 91 (1965). https://doi.org/PHLTAM (The authors postulated an electric dipole moment for the hypothetical intermediate boson W± of the weak interaction).
22. L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964); https://doi.org/PRLTAO T. D. Lee, L. Wolfenstein, loc cit in ref. 19.
23. H. Weyl, The Theory of Groups and Quantum Mechanics (translation of the 2d edition of Gruppentheorie und Quantenmechanik) E. P. Dutton and Co. (1931).
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 19, Number 3
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.