Discover
/
Article

Quantum Wells for Photonics

MAY 01, 1985
New techniques for growing semiconductors with alternating ultrathin layers llow one to produce materials with made‐to‐order electro‐optic properties and otential uses such as optical modulators and solid‐state photomultipliers.

DOI: 10.1063/1.880974

Daniel S. Chemla

The crystalline and electronic structures of semiconductors reflect a delicate balance of very large electromagnetic forces, and consequently minute compositional variations or small perturbations can induce large changes in the properties of these materials. for several decades now, research scientists and device designers have exploited his exceptional flexibility to tailor the electronic and optical properties of semiconductors for a variety of fundamental studies and applications. Semiconductor technology has made its most apparent impact, of course, in solid‐state electronics.

References

  1. 1. See, for example, L. L. Chang, K. Ploog, eds., Molecular Beam Epitaxy and Heterostructures, NATO Advanced Science Institute Series, Nijhoff, Dordrecht (1985).

  2. 2. See, for example, J. B. Mullin, S. J. C. Irvine, R. H. Moss, P. N. Robson, D. R. Wight, eds., Metal Organic Vapor Phase Epitaxy 1984, North‐Holland, Amsterdam (1984).

  3. 3. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970); https://doi.org/IBMJAE
    for an outline of the history of Esaki’s and Tsu’s discovery, with Leroy Chang, of artificial semiconductor superlattices, PHYSICS TODAY, March, p. 87.

  4. 4. See, for example, D. S. Chemla, D. A. B. Miller, P. W. Smith, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).

  5. 5. See, for example, F. Capasso, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).

  6. 6. R. Dingle, Festkörperprobleme 15, H. J. Queisser, ed., Pergamon, Braunschweig (1975).

  7. 7. R. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978); https://doi.org/APPLAB
    H. L. Stormer, Surf. Sci. 132, 519 (1983).https://doi.org/SUSCAS

  8. 8. T. Mimura, S. Hiyamizu, T. Fujii, K. Nambu, Japan J. Appl. Phys. 19, L225 (1980); https://doi.org/JJAPA5
    D. Delagebeaubeuf, P. Delesclilse, P. Etienne, M. Laviron, J. Chaplart, N. T. Linh, Electron Lett. 16, 667 (1980); https://doi.org/ELLEAK
    H. L. Stormer, Festkörperprobleme 24, P. Grosse, ed., Vieweg, Braunschweig (1984).

  9. 9. See Y. Suematsu’s article on page 32 of this issue.

  10. 10. D. S. Chemla, D. A. B. Miller, J. Opt. Soc. Am. B, to be published July 1985.

  11. 11. C. V. Shank, Science 219, 1031 (1983).https://doi.org/SCIEAS

  12. 12. W. H. Knox, R. F. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, Proc. Fourth Int. Conf. Ultrafast Phenomena, Springer‐Verlag, Berlin (1984), p. 162;
    Phys. Rev. Lett. 54, 1306 (1985).https://doi.org/PRLTAO

  13. 13. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984).https://doi.org/PRLTAO

  14. 14. R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteanu, Phys. Rev. B 29, 3740 (1984). https://doi.org/PRBMDO
    for a review of exciton spectroscopy in quantum‐well structures, see R. C. Miller, D. A. Kleinman, Proc. 3rd Trieste IUPAP Semiconductor Symp., J. Lumin. 30, 520 (1985).https://doi.org/JLUMA8

  15. 15. B. F. Levine, C. G. Bethea, W. T. Tsand, F. Capasso, K. K. Thornber, R. C. Fluton, D. A. Kleinman, Appl. Phys. Lett. 43, 769 (1983).https://doi.org/APPLAB

  16. 16. Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, W. Wiegmann, Optics Lett. 9, 507 (1984).https://doi.org/OPLEDP

  17. 17. H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Pasner, W. Wiegmann, Appl. Phys. Lett. 41, 221 (1982).https://doi.org/APPLAB

  18. 18. P. W. Smith, Proc. Conf. Electro ’83, session record 11/1, IEEE, New York (1983).

  19. 19. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE‐21, 117 (1985).https://doi.org/IEJQA7

  20. 20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Appl. Phys. Lett. 45, 13 (1984). https://doi.org/APPLAB
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Optics Lett. 9, 567 (1984); https://doi.org/OPLEDP
    to be published in IEEE J. Quantum Electron. (1985).

  21. 21. F. Capasso, Sur. Sci. 513, 142 (1984).

  22. 22. H. Kroemer, RCA Rev. 18, 332 (1957).https://doi.org/RCARCI

More about the Authors

Daniel S. Chemla. AT&T Bell Laboratories, Holmdel, New Jersey.

This Content Appeared In
pt-cover_1985_05.jpeg

Volume 38, Number 5

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.