Discover
/
Article

Quantum Wells for Photonics

MAY 01, 1985
New techniques for growing semiconductors with alternating ultrathin layers llow one to produce materials with made‐to‐order electro‐optic properties and otential uses such as optical modulators and solid‐state photomultipliers.
Daniel S. Chemla

The crystalline and electronic structures of semiconductors reflect a delicate balance of very large electromagnetic forces, and consequently minute compositional variations or small perturbations can induce large changes in the properties of these materials. for several decades now, research scientists and device designers have exploited his exceptional flexibility to tailor the electronic and optical properties of semiconductors for a variety of fundamental studies and applications. Semiconductor technology has made its most apparent impact, of course, in solid‐state electronics.

This article is only available in PDF format

References

  1. 1. See, for example, L. L. Chang, K. Ploog, eds., Molecular Beam Epitaxy and Heterostructures, NATO Advanced Science Institute Series, Nijhoff, Dordrecht (1985).

  2. 2. See, for example, J. B. Mullin, S. J. C. Irvine, R. H. Moss, P. N. Robson, D. R. Wight, eds., Metal Organic Vapor Phase Epitaxy 1984, North‐Holland, Amsterdam (1984).

  3. 3. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970); https://doi.org/IBMJAE
    for an outline of the history of Esaki’s and Tsu’s discovery, with Leroy Chang, of artificial semiconductor superlattices, PHYSICS TODAY, March, p. 87.

  4. 4. See, for example, D. S. Chemla, D. A. B. Miller, P. W. Smith, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).

  5. 5. See, for example, F. Capasso, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).

  6. 6. R. Dingle, Festkörperprobleme 15, H. J. Queisser, ed., Pergamon, Braunschweig (1975).

  7. 7. R. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978); https://doi.org/APPLAB
    H. L. Stormer, Surf. Sci. 132, 519 (1983).https://doi.org/SUSCAS

  8. 8. T. Mimura, S. Hiyamizu, T. Fujii, K. Nambu, Japan J. Appl. Phys. 19, L225 (1980); https://doi.org/JJAPA5
    D. Delagebeaubeuf, P. Delesclilse, P. Etienne, M. Laviron, J. Chaplart, N. T. Linh, Electron Lett. 16, 667 (1980); https://doi.org/ELLEAK
    H. L. Stormer, Festkörperprobleme 24, P. Grosse, ed., Vieweg, Braunschweig (1984).

  9. 9. See Y. Suematsu’s article on page 32 of this issue.

  10. 10. D. S. Chemla, D. A. B. Miller, J. Opt. Soc. Am. B, to be published July 1985.

  11. 11. C. V. Shank, Science 219, 1031 (1983).https://doi.org/SCIEAS

  12. 12. W. H. Knox, R. F. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, Proc. Fourth Int. Conf. Ultrafast Phenomena, Springer‐Verlag, Berlin (1984), p. 162;
    Phys. Rev. Lett. 54, 1306 (1985).https://doi.org/PRLTAO

  13. 13. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984).https://doi.org/PRLTAO

  14. 14. R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteanu, Phys. Rev. B 29, 3740 (1984). https://doi.org/PRBMDO
    for a review of exciton spectroscopy in quantum‐well structures, see R. C. Miller, D. A. Kleinman, Proc. 3rd Trieste IUPAP Semiconductor Symp., J. Lumin. 30, 520 (1985).https://doi.org/JLUMA8

  15. 15. B. F. Levine, C. G. Bethea, W. T. Tsand, F. Capasso, K. K. Thornber, R. C. Fluton, D. A. Kleinman, Appl. Phys. Lett. 43, 769 (1983).https://doi.org/APPLAB

  16. 16. Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, W. Wiegmann, Optics Lett. 9, 507 (1984).https://doi.org/OPLEDP

  17. 17. H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Pasner, W. Wiegmann, Appl. Phys. Lett. 41, 221 (1982).https://doi.org/APPLAB

  18. 18. P. W. Smith, Proc. Conf. Electro ’83, session record 11/1, IEEE, New York (1983).

  19. 19. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE‐21, 117 (1985).https://doi.org/IEJQA7

  20. 20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Appl. Phys. Lett. 45, 13 (1984). https://doi.org/APPLAB
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood, C. A. Burrus, Optics Lett. 9, 567 (1984); https://doi.org/OPLEDP
    to be published in IEEE J. Quantum Electron. (1985).

  21. 21. F. Capasso, Sur. Sci. 513, 142 (1984).

  22. 22. H. Kroemer, RCA Rev. 18, 332 (1957).https://doi.org/RCARCI

More about the authors

Daniel S. Chemla, AT&T Bell Laboratories, Holmdel, New Jersey.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1985_05.jpeg

Volume 38, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.