Nanofabrication
DOI: 10.1063/1.881222
A decade ago the fabrication and study of electron devices whose smallest features were just under 1 micron in size represented the forefront of the field. Today that forefront has moved down an order of magnitude to 100 nanometers, engendering new terminology based on the prefix nano, from the Greek word for dwarf: “nanoscale devices,” “nanolithography,” “nanofabrication.”
References
1. A. N. Broers, IBM J. Res. Dev. 32, 502 (1988). https://doi.org/IBMJAE
M. Isaacson, A. Murray, J. Vac. Sci. Technol. 19, 1117 (1981).https://doi.org/JVSTAL2. G. A. Sai‐Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, E. Ganin, IEEE Electron Dev. Lett. 9, 464, 633 (1988). https://doi.org/EDLEDZ
G. Shahidi, D. A. Antoniadis, H. I. Smith, IEEE Electron Dev. Lett. 9, 94 (1988).https://doi.org/EDLEDZ3. U. K. Mishra, A. S. Brown, M. J. Delaney, P. T. Greiling, C. F. Krumm, IEEE Trans. Microwave Theory Tech. 37, 1279 (1989).https://doi.org/IETMAB
4. K. Ismail, D. A. Antoniadis, H. I. Smith, Appl. Phys. Lett. 55, 589 (1989).https://doi.org/APPLAB
5. T. A. Fulton, G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).https://doi.org/PRLTAO
6. K. Ralls, R. A. Buhrman, Phys. Rev. Lett. 60, 2434 (1988).https://doi.org/PRLTAO
7. W. Chu, A. Yen, K. Ismail, M. I. Shepard, H. J. Lezec, C. R. Musil, J. Melngailis, Y. C. Ku, J. M. Carter, H. I. Smith, J. Vac. Sci. Technol. B 7, 1583 (1989).https://doi.org/JVTBD9
8. R. L. Kubena, F. P. Stratton, J. W. Ward, G. M. Atkinson, R. J. Joyce, J. Vac. Sci. Technol. B 7, 1798 (1989).https://doi.org/JVTBD9
9. M. A. Gesley, F. J. Hohn, R. G. Viswanathan, A. D. Wilson, J. Vac. Sci. Technol. B 6, 2014 (1988).https://doi.org/JVTBD9
10. T. H. P. Chang, D. P. Kern, M. A. McCord, J. Vac. Sci. Technol. B 7, 1855 (1989).https://doi.org/JVTBD9
11. J. Itoh, T. Kanayama, N. Atoda, K. Hoh, J. Vac. Sci. Technol. B 6, 409 (1988). https://doi.org/JVTBD9
A. Moel, M. L. Schattenburg, J. M. Carter, H. I. Smith, J. Vac. Sci. Technol. B 7, 1692 (1989).https://doi.org/JVTBD912. K. Ismail, W. Chu, A. Yen, D. A. Antoniadis, H. I. Smith, Appl. Phys. Lett. 54, 460 (1989).https://doi.org/APPLAB
13. C. T. Liu, K. Nakamura, D. C. Tsui, K. Ismail, D. A. Antoniadis, H. I. Smith, Appl. Phys. Lett. 55, 168 (1989).https://doi.org/APPLAB
14. K. Ismail, T. P. Smith, W. T. Masselink, H. I. Smith, Appl. Phys. Lett. 55, 2766 (1989).https://doi.org/APPLAB
15. J. P. Kotthaus, Phys. Scr. T19, 120 (1987).https://doi.org/PHSTBO
16. A. Yen, R. Ghanbari, H. I. Smith, Microelectron. Eng. (1989), to be published.
17. M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).https://doi.org/PRLTAO
18. J. N. Randall, M. A. Reed, G. A. Frazier, J. Vac. Sci. Technol. B 7, 1398 (1989). https://doi.org/JVTBD9
N. Margolus, T. Toffoli, G. Vichniac, Phys. Rev. Lett. 56, 1694 (1986).https://doi.org/PRLTAO19. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marcel, C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988). https://doi.org/PRLTAO
D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Richie, G. A. C. Jones, J. Phys. C 21, L209 (1988).https://doi.org/JPSOAW20. G. Timp, H. U. Baranger, P. de Vegvar, J. E. Cunningham, R. E. Howard, P. Behringer, P. M. Mankiewich, Phys. Rev. Lett. 60, 2081 (1988).https://doi.org/PRLTAO
21. K. Ismail, D. A. Antoniadis, H. I. Smith, Appl. Phys. Lett. 54, 1130 (1989).https://doi.org/APPLAB
22. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).https://doi.org/JJAPA5
More about the Authors
Henry I. Smith. Massachusetts Institute of Technology, Cambridge.
Harold G. Craighead. Cornell University, Ithaca, New York.