Discover
/
Article

Josephson Computer Technology

MAR 01, 1986
Recent advances on the road to superconducting computers include novel operating designs for logic and memory circuits as well as stable and reliable devices made entirely from refractory materials.
Hisao Hayakawa

In 1962 Brian Josephson predicted that a current of superconducting electron pairs could tunnel through an insulating junction between two superconductors while maintaining the phase coherence of the pairs’ wavefunctions on the two sides of the junction; the effect was soon experimentally verified. Such Josephson junctions can switch rapidly to the resistive state and have very low power dissipation, properties that suggest the application of Josephson junctions to computers. IBM started investigating superconducting computers, using Josephson junctions for memories and logic circuits, in 1964. Juri Matisoo and his colleagues at IBM demonstrated a logic circuit with subnanosecond operation in 1966. At the time, this switching speed was very attractive, for it indicated that Josephson devices could be competitive with semiconductor devices.

This article is only available in PDF format

References

  1. 1. J. Matisoo, Appl. Phys. Lett. 9, 167 (1966).https://doi.org/APPLAB

  2. 2. J. H. Greiner et al., IBM J. Res. Dev. 24, 195 (1980).https://doi.org/IBMJAE

  3. 3. A. L. Robinson, Science 222, 492 (1983).https://doi.org/SCIEAS

  4. 4. J. Nakano, Y. Mimura, K. Nagata, Y. Hasumi, T. Waho, in Extended Abstracts, 16th Int. Conf. Solid State Devices and Materials, Kobe, 1984, Japan Soc. Appl. Phys., Tokyo (1984), p. 635.

  5. 5. H. Kroger, L. N. Smith, D. W. Jillie, Appl. Phys. Lett. 39, 280 (1981).https://doi.org/APPLAB

  6. 6. M. Gurvitch, M. A. Washington, H. A. Huggins, Appl. Phys. Lett. 42, 472 (1983).https://doi.org/APPLAB

  7. 7. A. Shoji, M. Aoyagi, S. Kosaka, F. Shinoki, H. Hayakawa, Appl. Phys. Lett. 46, 1098 (1985).https://doi.org/APPLAB

  8. 8. A. Shoji, F. Shinoki, S. Kosaka, M. Aoyagi, H. Hayakawa, Appl. Phys. Lett. 41, 1097 (1982).https://doi.org/APPLAB

  9. 9. S. Kosaka, A. Shoji, M. Aoyagi, F. Shinoki, S. Tahara, H. Ohigashi, H. Nakagawa, S. Takada, H. Hayakawa, IEEE Trans. Magn. MAG‐21, 102 (1985).https://doi.org/IEMGAQ

  10. 10. S. Tahara, S. Kosaka, A. Shoji, M. Aoyagi, F. Shinoki, H. Hayakawa, IEEE Trans. Magn. MAG‐21, 733 (1985).https://doi.org/IEMGAQ

  11. 11. T. R. Gheewala, IBM J. Res. Dev. 24, 130 (1980).https://doi.org/IBMJAE

  12. 12. A. Mukherjee, IEEE Electron Dev. Lett. EDL‐3, 29 (1982).

  13. 13. T. A. Fulton, S. S. Pei, L. N. Dunkelberger, Appl. Phys. Lett. 34, 709 (1979).https://doi.org/APPLAB

  14. 14. T. R. Gheewala, A. Mukherjee, in Tech. Digest 25th Int. Electron Devices Meeting, IEEE, New York (1979), p. 482.

  15. 15. K. Hohkawa, M. Okada, A. Ishida, Appl. Phys. Lett. 39, 653 (1981). https://doi.org/APPLAB
    J. Sone, T. Yoshida, S. Tanaka, H. Abe, Appl. Phys. Lett. 41, 886 (1982).https://doi.org/APPLAB

  16. 16. S. Takada, S. Kosaka, H. Hayakawa, Jpn. J. Appl. Phys. Suppl. 22‐1, 447 (1979).https://doi.org/JJPYA5

  17. 17. J. Sone, T. Yoshida, S. Tahara, H. Abe, Tech. Digest 25th Int. Electron Devices Meeting, IEEE, New York (1982) p. 762.

  18. 18. H. Nakagawa, H. Ohigashi, I. Kurosawa, E. Sogawa, S. Takada, H. Hayakawa, in Extended Abstracts, 15th Int. Conf. Solid State Devices and Materials, Tokyo, 1983, Japan Soc. Appl. Phys., Tokyo (1983), p. 137.

  19. 19. A. Ishida, M. Yamamoto, K. Miyahara, Y. Yamauchi, in Proc. Int. Conf. Computer Design, IEEE, New York (1983), p. 508.
    W. H. Henkels, K. H. Brown, T. V. Rajeevakumar, L. Geppert, J. W. Allan, Y. H. Lee, J. T. Yeh, in Proc. Int. Conf. Computer Design, IEEE, New York (1983), p. 580.
    W. H. Henckels, L. M. Geppert, J. Kadlec, P. W. Epperlein, H. Beha, W. H. Chang, H. Jackel, J. Appl. Phys. 58, 2371 (1985).https://doi.org/JAPIAU

  20. 20. I. Kurosawa, H. Nakagawa, A. Yagi, S. Takada, H. Hayakawa, Appl. Phys. Lett. 43, 1067 (1983).https://doi.org/APPLAB

  21. 21. H. Nakagawa, I. Kurosawa, S. Takada, H. Hayakawa, in Extended Abstracts, 17th Int. Conf. Solid State Devices and Materials, Tokyo, 1985, Japan Soc. Appl. Phys., Tokyo (1984), p. 123.

  22. 22. M. B. Ketchen et al., IEEE Electron Dev. Lett. EDL‐2, 262 (1981).
    M. B. Ketchen, D. J. Herrel, C. J. Anderson, J. Appl. Phys. 57, 2550 (1985).https://doi.org/JAPIAU

More about the Authors

Hisao Hayakawa. Electrotechnical Laboratory, Agency of Industrial Science and Technology, Japanese Ministry of International Trade and Industry, Ibaraki, Japan.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1986_03.jpeg

Volume 39, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.