Discover
/
Article

Hole‐Burning Spectroscopy of Glasses

MAY 01, 1990
This two‐photon spectroscopy technique yields quantitative measures of the distribution functions for local variables such as the dipole moment and the compressibility. It may also provide a means to enhance the capacity of optical memories.
Dietrich Haarer
Robert Silbey

The history of man‐made glass dates back to ancient Egypt, where the first glass containers were created around 1500 BC. Later, in classical Rome, glass objects of unparalleled beauty were made. Glassy materials and the artifacts and objects made from them have fascinated mankind since those early times.

This article is only available in PDF format

References

  1. 1. R. Zallen, Physics of Amorphous Solids, Wiley, New York (1983).

  2. 2. R. H. Silsbee, in Optical Properties of Solids, S. Nudelman, S. Mitra, eds., Plenum, New York (1969), p. 607.

  3. 3. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 74, 679 (1948).

  4. 4. A.. Szabo, Phys. Rev. B 11, 4512 (1975).https://doi.org/PHRVAO

  5. 5. B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).https://doi.org/OPCOB8

  6. 6. A. A. Gorokhovskii, R. Kaarli, L. A. Rebane, JETP Lett. 20, 216 (1974).https://doi.org/JTPLA2

  7. 7. W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications, Topics in Current Physics 44, Springer‐Verlag, New York (1988).

  8. 8. J. Luminescence, 36, 179‐329 (1987).

  9. 9. J. Friedrich, D. Haarer, Angew. Chem. Int. Ed. 23, 113 (1984).

  10. 10. S. Volker, Annu. Rev. Phys. Chem. 40, 499 (1989).https://doi.org/ARPLAP

  11. 11. P. M. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen, M. J. Weber, Phys. Rev. Lett. 36, 813 (1976).https://doi.org/PRLTAO

  12. 12. M. M. Broer, B. Golding, W. A. Haemmerle, J. R. Simpson, Phys. Rev. B 33, 4160 (1986).https://doi.org/PRBMDO

  13. 13. J. M. Hayes, G. J. Small, Chem. Phys. 27, 151 (1978).https://doi.org/CMPHC2

  14. 14. F. Graf, H. K. Hong, A. Nazzal, D. Haarer, Chem. Phys. Lett. 59, 217 (1978).https://doi.org/CHPLBC

  15. 15. P. W. Anderson, B. I. Halperin, C. M. Varma, Philos. Mag. 25, 1 (1972). https://doi.org/PHMAA4
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).https://doi.org/JLTPAC

  16. 16. R. Jankowiak, G. J. Small, J. Phys. Chem. 90, 5612 (1986).https://doi.org/JPCHAX

  17. 17. C. Yu, A. Leggett, Comments Condensed Matter Phys. 14, 231 (1988).

  18. 18. G. Schulte, W. Grond, D. Haarer, R. Silbey, J. Chem. Phys. 88, 679 (1988).https://doi.org/JCPSA6

  19. 19. C. A. Walsh, M. Berg, L. R. Narasimhan, M. D. Fayer, J. Chem. Phys. 86, 77 (1987). https://doi.org/JCPSA6
    A. Rebane, D. Haarer, Opt. Comm. 70, 478 (1989).https://doi.org/OPCOB8

  20. 20. A. P. Marchetti, M. Scozzsava, R. H. Young, Chem. Phys. Lett. 51, 424 (1977). https://doi.org/CHPLBC
    V. D. Samoilenko, N. V. Razumova, R. I. Personov, Opt. Spectrosc. (USSR) 52, 346 (1982). https://doi.org/OPSUA3
    F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, Chem. Phys. Lett. 94, 483 (1983). https://doi.org/CHPLBC
    U. Bogner, P. Schätz, M. Maier, Chem. Phys. Lett. 102, 267 (1983). https://doi.org/CHPLBC
    L. Kador, D. Haarer, R. I. Personov, J. Chem. Phys. 86, 5300 (1987).

  21. 21. L. Kador, R. Personov, W. Richter, Th. Sesselmann, D. Haarer, Polym. J. 19, 61 (1987).https://doi.org/POLJB8

  22. 22. Th. Sesselmann, W. Richter, D. Haarer, H. Morawitz, Phys. Rev. B 36, 7601 (1987).https://doi.org/PRBMDO

  23. 23. B. Laird, J. Skinner, J. Chem. Phys. 90, 3274 (1989).https://doi.org/JCPSA6

  24. 24. L. Kador, S. Jahn, D. Haarer, R. Silbey, Phys. Rev. (in press).

  25. 25. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, US Patent 4 101 976 (1978).

  26. 26. D. Haarer, Jpn. J. Appl. Phys. 26 (4), 227 (1987).https://doi.org/JJPYA5

  27. 27. S. G. Johnson, D. Tang, R. Jankowiak, J. M. Hayes, G. J. Small, D. M. Tiede, J. Phys. Chem. 93, 5953 (1989).https://doi.org/JPCHAX

More about the authors

Dietrich Haarer, Universität Bayreuth, Bayreuth, West Germany.

Robert Silbey, MIT.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1990_05.jpeg

Volume 43, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.