Discover
/
Article

Diffraction Gratings at the Mount Wilson Observatory

JUL 01, 1986
‘Engines’ capable of ruling hundreds of thousands of straight, parallel, equally spaced grooves within tolerances of only a few angstroms have led to advances in fields as different as quantum mechanics and astrophysics.
Horace W. Babcock

The past century has seen major advances in diffraction gratings, motivated by pressure for new and better data in two rather distinct fields: laboratory spectroscopy—aimed at understanding atomic structure and testing quantum theory—and astrophysical spectroscopy—aimed at understanding objects ranging from the Sun and stars to faint sources at the limit of detection. In this historical account I trace some of the hard‐won gains in the technology of the ruling machines that produce the gratings, and I touch on the role that larger and higher‐quality gratings have played in scientific advances. I focus on the work at the Mount Wilson Observatory, where I directed the diffraction‐grating laboratory from 1948 to 1963, but I do so with full recognition of the important contributions made at numerous other laboratories, especially those at The Johns Hopkins University, the Massachusetts Institute of Technology and the Bausch & Lomb Optical Company.

This article is only available in PDF format

References

  1. 1. H. A. Rowland, Astrophys. J. 1, 29, 131222, 295; https://doi.org/ASJOAB
    H. A. Rowland, 2, 45, 109188, 306;
    H. A. Rowland, 3, 141, 201;
    H. A. Rowland, 4, 106, 278;
    H. A. Rowland, 5, 11, 109 (1895–97).

  2. 2. D. M. Livingston, Michelson, Master of Light, Scribner’s, New York (1973).

  3. 3. Revision of Rowland’s Preliminary Table of Solar Spectrum Wave‐Lengths, Carnegie Institution of Washington, Washington, DC (1928).

  4. 4. H. D. Babcock, Proc. Natl. Acad. Sci. USA 15, 471 (1929).https://doi.org/PNASA6

  5. 5. H. D. Babcock, J. Opt. Soc. Am. 34, 1 (1944).https://doi.org/JOSAAH

  6. 6. J. Strong, Astrophys. J. 83, 401 (1936).https://doi.org/ASJOAB

  7. 7. H. D. Babcock, H. W. Babcock, J. Opt. Soc. Am. 41, 776 (1951).https://doi.org/JOSAAH

  8. 8. G. R. Harrison, G. W. Stroke, J. Opt. Soc. Am. 45, 112 (1955). https://doi.org/JOSAAH
    G. R. Harrison, J. Opt. Soc. Am. 39, 413 (1949).https://doi.org/JOSAAH

  9. 9. H. W. Babcock, Appl. Opt. 1, 415 (1962).https://doi.org/APOPAI

  10. 10. R. F. Griffin, A Photometric Atlas of the Spectrum of Arcturus λλ3600–8825 Å, Cambridge Philos. Soc., Cambridge, England (1968).

  11. 11. R. Griffin, R. Griffin, A Photometric Atlas of the Spectrum of Procyon λλ3140–7470 Å, Cambridge Philos. Soc., Cambridge, England (1979).

  12. 12. G. Münch, Astrophys. J. 125, 42 (1957).https://doi.org/ASJOAB

  13. 13. H. W. Babcock, Astrophys. J. Suppl. 3, no. 30 (1958). https://doi.org/APJSA2
    H. W. Babcock, Stars and Stellar Systems, vol. 6, Univ. Chicago P., Chicago (1960) p. 282.

  14. 14. I. S. Bowen, Astrophys. J. 116, 1 (1952).https://doi.org/ASJOAB

  15. 15. R. R. McMath, Astrophys. J. 122, 565 (1955); https://doi.org/ASJOAB
    R. R. McMath, Astrophys. J. 123, 1 (1956).https://doi.org/ASJOAB

  16. 16. O. Mohler, A. K. Pierce, R. R. McMath, L. Goldberg, Photometric Atlas of the Near Infrared Solar Spectrum λ8465 to λ25242, McMath‐Hulbert Observatory, Univ. Michigan, Ann Arbor (1950).

  17. 17. L. Delbouille, G. Roland, Photometric Atlas of the Solar Spectrum λ7498 to λ12 016 Å, Univ. Liège, Liège, Belgium (1963).

  18. 18. A. K. Pierce, J. Opt. Soc. Am. 47, 6 (1957).https://doi.org/JOSAAH

  19. 19. H. W. Babcock, H. D. Babcock, Astrophys. J. 118, 387 (1953).https://doi.org/ASJOAB

  20. 20. H. W. Babcock, H. D. Babcock, Publ. Astron. Soc. Pac. 64, 282 (1952).https://doi.org/PASPAU

  21. 21. H. D. Babcock, Astrophys. J. 130, 364 (1959).https://doi.org/ASJOAB

  22. 22. H. W. Babcock, Astrophys. J. 133, 572 (1961). https://doi.org/ASJOAB
    H. W. Babcock, in Proc. Plasma Space Science Symposium, C. C. Chang, S. S. Huang, eds., Reidel, Dordrecht The Netherlands (1965) p. 7.

More about the authors

Horace W. Babcock, Mount Wilson and Palomar Observatories, Pasadena, California.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1986_07.jpeg

Volume 39, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.